49 resultados para Coastal Vulnerability
Resumo:
The genetic diversity of populations, which contributes greatly to their adaptive potential, is negatively affected by anthropogenic habitat fragmentation and destruction. However, continental-scale losses of genetic diversity also resulted from the population expansions that followed the end of the last glaciation, an element that is rarely considered in a conservation context. We addressed this issue in a meta-analysis in which we compared the spatial patterns of vulnerability of 18 widespread European amphibians in light of phylogeographic histories (glacial refugia and postglacial routes) and anthropogenic disturbances. Conservation statuses significantly worsened with distances from refugia, particularly in the context of industrial agriculture; human population density also had a negative effect. These findings suggest that features associated with the loss of genetic diversity in post-glacial amphibian populations (such as enhanced fixation load or depressed adaptive potential) may increase their susceptibility to current threats (e.g., habitat fragmentation and pesticide use). We propose that the phylogeographic status of populations (i.e., refugial vs. post-glacial) should be considered in conservation assessments for regional and national red lists.
Resumo:
BACKGROUND: Frequent emergency department (ED) users meet several of the criteria of vulnerability, but this needs to be further examined taking into consideration all vulnerability's different dimensions. This study aimed to characterize frequent ED users and to define risk factors of frequent ED use within a universal health care coverage system, applying a conceptual framework of vulnerability. METHODS: A controlled, cross-sectional study comparing frequent ED users to a control group of non-frequent users was conducted at the Lausanne University Hospital, Switzerland. Frequent users were defined as patients with five or more visits to the ED in the previous 12 months. The two groups were compared using validated scales for each one of the five dimensions of an innovative conceptual framework: socio-demographic characteristics; somatic, mental, and risk-behavior indicators; and use of health care services. Independent t-tests, Wilcoxon rank-sum tests, Pearson's Chi-squared test and Fisher's exact test were used for the comparison. To examine the -related to vulnerability- risk factors for being a frequent ED user, univariate and multivariate logistic regression models were used. RESULTS: We compared 226 frequent users and 173 controls. Frequent users had more vulnerabilities in all five dimensions of the conceptual framework. They were younger, and more often immigrants from low/middle-income countries or unemployed, had more somatic and psychiatric comorbidities, were more often tobacco users, and had more primary care physician (PCP) visits. The most significant frequent ED use risk factors were a history of more than three hospital admissions in the previous 12 months (adj OR:23.2, 95%CI = 9.1-59.2), the absence of a PCP (adj OR:8.4, 95%CI = 2.1-32.7), living less than 5 km from an ED (adj OR:4.4, 95%CI = 2.1-9.0), and household income lower than USD 2,800/month (adj OR:4.3, 95%CI = 2.0-9.2). CONCLUSIONS: Frequent ED users within a universal health coverage system form a highly vulnerable population, when taking into account all five dimensions of a conceptual framework of vulnerability. The predictive factors identified could be useful in the early detection of future frequent users, in order to address their specific needs and decrease vulnerability, a key priority for health care policy makers. Application of the conceptual framework in future research is warranted.
Resumo:
Integrated in a wide research assessing destabilizing and triggering factors to model cliff dynamic along the Dieppe's shoreline in High Normandy, this study aims at testing boat-based mobile LiDAR capabilities by scanning 3D point clouds of the unstable coastal cliffs. Two acquisition campaigns were performed in September 2012 and September 2013, scanning (1) a 30-km-long shoreline and (2) the same test cliffs in different environmental conditions and device settings. The potentials of collected data for 3D modelling, change detection and landslide monitoring were afterward assessed. By scanning during favourable meteorological and marine conditions and close to the coast, mobile LiDAR devices are able to quickly scan a long shoreline with median point spacing up to 10cm. The acquired data are then sufficiently detailed to map geomorphological features smaller than 0.5m2. Furthermore, our capability to detect rockfalls and erosion deposits (>m3) is confirmed, since using the classical approach of computing differences between sequential acquisitions reveals many cliff collapses between Pourville and Quiberville and only sparse changes between Dieppe and Belleville-sur-Mer. These different change rates result from different rockfall susceptibilities. Finally, we also confirmed the capability of the boat-based mobile LiDAR technique to monitor single large changes, characterizing the Dieppe landslide geometry with two main active scarps, retrogression up to 40m and about 100,000m3 of eroded materials.