196 resultados para Clustering methods
Resumo:
For several decades mechanical properties of shallow formations (soil) obtained by sonic to ultrasonic wave testing were reported to be greater than those based on mechanical tests. The present article relying on a statistical analysis of more than 300 tests shows that elastic moduli of the soil can indeed be obtained from (ultra)sonic tests and that they are identical to those resulting from mechanical tests.
Resumo:
The ancient Greek medical theory based on balance or imbalance of humors disappeared in the western world, but does survive elsewhere. Is this survival related to a certain degree of health care efficiency? We explored this hypothesis through a study of classical Greco-Arab medicine in Mauritania. Modern general practitioners evaluated the safety and effectiveness of classical Arabic medicine in a Mauritanian traditional clinic, with a prognosis/follow-up method allowing the following comparisons: (i) actual patient progress (clinical outcome) compared with what the traditional 'tabib' had anticipated (= prognostic ability) and (ii) patient progress compared with what could be hoped for if the patient were treated by a modern physician in the same neighborhood. The practice appeared fairly safe and, on average, clinical outcome was similar to what could be expected with modern medicine. In some cases, patient progress was better than expected. The ability to correctly predict an individual's clinical outcome did not seem to be better along modern or Greco-Arab theories. Weekly joint meetings (modern and traditional practitioners) were spontaneously organized with a modern health centre in the neighborhood. Practitioners of a different medical system can predict patient progress. For the patient, avoiding false expectations with health care and ensuring appropriate referral may be the most important. Prognosis and outcome studies such as the one presented here may help to develop institutions where patients find support in making their choices, not only among several treatment options, but also among several medical systems.
Resumo:
We present a novel spatiotemporal-adaptive Multiscale Finite Volume (MsFV) method, which is based on the natural idea that the global coarse-scale problem has longer characteristic time than the local fine-scale problems. As a consequence, the global problem can be solved with larger time steps than the local problems. In contrast to the pressure-transport splitting usually employed in the standard MsFV approach, we propose to start directly with a local-global splitting that allows to locally retain the original degree of coupling. This is crucial for highly non-linear systems or in the presence of physical instabilities. To obtain an accurate and efficient algorithm, we devise new adaptive criteria for global update that are based on changes of coarse-scale quantities rather than on fine-scale quantities, as it is routinely done before in the adaptive MsFV method. By means of a complexity analysis we show that the adaptive approach gives a noticeable speed-up with respect to the standard MsFV algorithm. In particular, it is efficient in case of large upscaling factors, which is important for multiphysics problems. Based on the observation that local time stepping acts as a smoother, we devise a self-correcting algorithm which incorporates the information from previous times to improve the quality of the multiscale approximation. We present results of multiphase flow simulations both for Darcy-scale and multiphysics (hybrid) problems, in which a local pore-scale description is combined with a global Darcy-like description. The novel spatiotemporal-adaptive multiscale method based on the local-global splitting is not limited to porous media flow problems, but it can be extended to any system described by a set of conservation equations.
Resumo:
Phagocytosis, whether of food particles in protozoa or bacteria and cell remnants in the metazoan immune system, is a conserved process. The particles are taken up into phagosomes, which then undergo complex remodeling of their components, called maturation. By using two-dimensional gel electrophoresis and mass spectrometry combined with genomic data, we identified 179 phagosomal proteins in the amoeba Dictyostelium, including components of signal transduction, membrane traffic, and the cytoskeleton. By carrying out this proteomics analysis over the course of maturation, we obtained time profiles for 1,388 spots and thus generated a dynamic record of phagosomal protein composition. Clustering of the time profiles revealed five clusters and 24 functional groups that were mapped onto a flow chart of maturation. Two heterotrimeric G protein subunits, Galpha4 and Gbeta, appeared at the earliest times. We showed that mutations in the genes encoding these two proteins produce a phagocytic uptake defect in Dictyostelium. This analysis of phagosome protein dynamics provides a reference point for future genetic and functional investigations.
Resumo:
A high-resolution three-dimensional (3-D) seismic reflection survey was conducted in Lake Geneva, near the city of Lausanne, Switzerland, as part of a project for developing such seismic techniques. Using a single 48-channel streamer, the 3-D site with an area of 1200 m x 600 m was surveyed in 10 days. A variety of complex geologic structures (e.g. thrusts, folds, channel-fill) up to similar to150 m below the water bottom were obtained with a 15 in.(3) water gun. The 3-D data allowed the construction of an accurate velocity model and the distinction of five major seismic facies within the Lower Freshwater Molasse (Aquitanian) and the Quaternary sedimentary units. Additionally, the Plateau Molasse (PM) and Subalpine Molasse (SM) erosional surface, "La Paudeze" thrust fault (PM-SM boundary) and the thickness of Quaternary sediments were accurately delineated in 3-D.
Resumo:
Aim We test for the congruence between allele-based range boundaries (break zones) in silicicolous alpine plants and species-based break zones in the silicicolous flora of the European Alps. We also ask whether such break zones coincide with areas of large elevational variation.Location The European Alps.Methods On a regular grid laid across the entire Alps, we determined areas of allele- and species-based break zones using respective clustering algorithms, identifying discontinuities in cluster distributions (breaks), and quantifying integrated break densities (break zones). Discontinuities were identified based on the intra-specific genetic variation of 12 species and on the floristic distribution data from 239 species, respectively. Coincidence between the two types of break zones was tested using Spearman's correlation. Break zone densities were also regressed on topographical complexity to test for the effect of elevational variation.Results We found that two main break zones in the distribution of alleles and species were significantly correlated. Furthermore, we show that these break zones are in topographically complex regions, characterized by massive elevational ranges owing to high mountains and deep glacial valleys. We detected a third break zone in the distribution of species in the eastern Alps, which is not correlated with topographic complexity, and which is also not evident from allelic distribution patterns. Species with the potential for long-distance dispersal tended to show larger distribution ranges than short-distance dispersers.Main conclusions We suggest that the history of Pleistocene glaciations is the main driver of the congruence between allele-based and species-based distribution patterns, because occurrences of both species and alleles were subject to the same processes (such as extinction, migration and drift) that shaped the distributions of species and genetic lineages. Large elevational ranges have had a profound effect as a dispersal barrier for alleles during post-glacial immigration. Because plant species, unlike alleles, cannot spread via pollen but only via seed, and thus disperse less effectively, we conclude that species break zones are maintained over longer time spans and reflect more ancient patterns than allele break zones.Conny Thiel-Egenter and Nadir Alvarez contributed equally to this paper and are considered joint first authors.
Resumo:
In the International Olympic Committee (IOC) accredited laboratories, specific methods have been developed to detect anabolic steroids in athletes' urine. The technique of choice to achieve this is gas-chromatography coupled with mass spectrometry (GC-MS). In order to improve the efficiency of anti-doping programmes, the laboratories have defined new analytical strategies. The final sensitivity of the analytical procedure can be improved by choosing new technologies for use in detection, such as tandem mass spectrometry (MS-MS) or high resolution mass spectrometry (HRMS). A better sample preparation using immuno-affinity chromatography (IAC) is also a good tool for improving sensitivity. These techniques are suitable for the detection of synthetic anabolic steroids whose structure is not found naturally in the human body. The more and more evident use, on a large scale, of substances chemically similar to the endogenous steroids obliges both the laboratory and the sports authorities to use the steroid profile of the athlete in comparison with reference ranges from a population or with intraindividual reference values.
Resumo:
Oscillations have been increasingly recognized as a core property of neural responses that contribute to spontaneous, induced, and evoked activities within and between individual neurons and neural ensembles. They are considered as a prominent mechanism for information processing within and communication between brain areas. More recently, it has been proposed that interactions between periodic components at different frequencies, known as cross-frequency couplings, may support the integration of neuronal oscillations at different temporal and spatial scales. The present study details methods based on an adaptive frequency tracking approach that improve the quantification and statistical analysis of oscillatory components and cross-frequency couplings. This approach allows for time-varying instantaneous frequency, which is particularly important when measuring phase interactions between components. We compared this adaptive approach to traditional band-pass filters in their measurement of phase-amplitude and phase-phase cross-frequency couplings. Evaluations were performed with synthetic signals and EEG data recorded from healthy humans performing an illusory contour discrimination task. First, the synthetic signals in conjunction with Monte Carlo simulations highlighted two desirable features of the proposed algorithm vs. classical filter-bank approaches: resilience to broad-band noise and oscillatory interference. Second, the analyses with real EEG signals revealed statistically more robust effects (i.e. improved sensitivity) when using an adaptive frequency tracking framework, particularly when identifying phase-amplitude couplings. This was further confirmed after generating surrogate signals from the real EEG data. Adaptive frequency tracking appears to improve the measurements of cross-frequency couplings through precise extraction of neuronal oscillations.
Resumo:
This paper characterizes and evaluates the potential of three commercial CT iterative reconstruction methods (ASIR?, VEO? and iDose(4 ()?())) for dose reduction and image quality improvement. We measured CT number accuracy, standard deviation (SD), noise power spectrum (NPS) and modulation transfer function (MTF) metrics on Catphan phantom images while five human observers performed four-alternative forced-choice (4AFC) experiments to assess the detectability of low- and high-contrast objects embedded in two pediatric phantoms. Results show that 40% and 100% ASIR as well as iDose(4) levels 3 and 6 do not affect CT number and strongly decrease image noise with relative SD constant in a large range of dose. However, while ASIR produces a shift of the NPS curve apex, less change is observed with iDose(4) with respect to FBP methods. With second-generation iterative reconstruction VEO, physical metrics are even further improved: SD decreased to 70.4% at 0.5 mGy and spatial resolution improved to 37% (MTF(50%)). 4AFC experiments show that few improvements in detection task performance are obtained with ASIR and iDose(4), whereas VEO makes excellent detections possible even at an ultra-low-dose (0.3 mGy), leading to a potential dose reduction of a factor 3 to 7 (67%-86%). In spite of its longer reconstruction time and the fact that clinical studies are still required to complete these results, VEO clearly confirms the tremendous potential of iterative reconstructions for dose reduction in CT and appears to be an important tool for patient follow-up, especially for pediatric patients where cumulative lifetime dose still remains high.
Resumo:
PURPOSE OF REVIEW: Invasive candidiasis is a severe infectious complication occurring mostly in onco-hematologic and surgical patients. Its conventional diagnosis is insensitive and often late, leading to a delayed treatment and a high mortality. The purpose of this article is to review recent contributions in the nonconventional diagnostic approaches of invasive candidiasis, both for the detection of the epidose and the characterization of the etiologic agent. RECENT FINDINGS: Antigen-based tests to detect invasive candidiasis comprise a specific test, mannan, as well as a nonspecific test, beta-D-glucan. Both have a moderate sensitivity and a high specificity, and cannot be recommended alone as a negative screening tool or a positive syndrome driven diagnostic tool. Molecular-based tests still have not reached the stage of rapid, easy to use, standardized tests ideally complementing blood culture at the time of blood sampling. New tests (fluorescence in-situ hybridization or mass spectrometry) significantly reduce the delay of identification of Candida at the species level in positive blood cultures, and should have a positive impact on earlier appropriate antifungal therapy and possibly on outcome. SUMMARY: Both antigen-based and molecular tests appear as promising new tools to complement and accelerate the conventional diagnosis of invasive candidiasis with an expected significant impact on earlier and more focused treatment and on prognosis.
Resumo:
Fraud is as old as Mankind. There are an enormous number of historical documents which show the interaction between truth and untruth; therefore it is not really surprising that the prevalence of publication discrepancies is increasing. More surprising is that new cases especially in the medical field generate such a huge astonishment. In financial mathematics a statistical tool for detection of fraud is known which uses the knowledge of Newcomb and Benford regarding the distribution of natural numbers. This distribution is not equal and lower numbers are more likely to be detected compared to higher ones. In this investigation all numbers contained in the blinded abstracts of the 2009 annual meeting of the Swiss Society of Anesthesia and Resuscitation (SGAR) were recorded and analyzed regarding the distribution. A manipulated abstract was also included in the investigation. The χ(2)-test was used to determine statistical differences between expected and observed counts of numbers. There was also a faked abstract integrated in the investigation. A p<0.05 was considered significant. The distribution of the 1,800 numbers in the 77 submitted abstracts followed Benford's law. The manipulated abstract was detected by statistical means (difference in expected versus observed p<0.05). Statistics cannot prove whether the content is true or not but can give some serious hints to look into the details in such conspicuous material. These are the first results of a test for the distribution of numbers presented in medical research.