227 resultados para Carbon, Activated.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent studies have shown that CD4+ CD25+ T cells belong to two functionally different T lymphocytes, i.e. regulatory T cells (Treg) or activated T cells (Tact), which can be distinguished based on the expression of CD45RO and IL-7R: Treg (FoxP3+) are CD45RO+ IL-7R- , whereas Tact (FoxP3- ) are CD45RO+ IL- 7R+. In order to determine if a CD4+ CD25+ CD45RO+ IL-7R+ activated T cell population might be identified in kidney transplant recipients, we studied 27 healthy subjects (HS) and 23 kidney recipients, of whom 17 had stable graft function under standard immunosuppression (IS), 5 had biopsy-proven chronic humoral rejection (CHR), and one was a stable "tolerant" patient who had discontinued IS for more than 2 years. Phenotypical analysis by flow cytometry and functional assays by MLR were performed. Overall, the Tact population was found to be significantly increased in 87% of the transplant recipients (mean: 18.8±10.1% of CD4+ CD25+ T cells) compared to HS (mean: 4.5±2.0%; P<0.0001). In the 5 patients with CHR, this Tact population was highly expanded (31.3±9.3%; P<0.0001), whereas it was comparable to HS in the "tolerant" recipient (4.7%). Intermediate levels (16.0±6.9%; P<0.0001) were found in the 17 stable recipients. In CHR, the proliferative capacity of the Tact population was found to be 5-fold higher when stimulated by irradiated donor PBMC as compared to a stimulation by irradiated 3rd party PBMC. After kidney transplantation, an expanded circulating CD4+ CD25+ T cell population characterized by the expression of CD45RO and IL-7R was found in most recipients, particularly in those with CHR. In a patient with long-term operational tolerance, this Tact population was similar to HS. Measuring circulating Tact may become a useful monitoring tool after transplantation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In mammals, many aspects of metabolism are under circadian control. At least in part, this regulation is achieved by core-clock or clock-controlled transcription factors whose abundance and/or activity oscillate during the day. The clock-controlled proline- and acidic amino acid-rich domain basic leucine zipper proteins D-site-binding protein, thyrotroph embryonic factor, and hepatic leukemia factor have previously been shown to participate in the circadian control of xenobiotic detoxification in liver and other peripheral organs. Here we present genetic and biochemical evidence that the three proline- and acidic amino acid-rich basic leucine zipper proteins also play a key role in circadian lipid metabolism by influencing the rhythmic expression and activity of the nuclear receptor peroxisome proliferator-activated receptor α (PPARα). Our results suggest that, in liver, D-site-binding protein, hepatic leukemia factor, and thyrotroph embryonic factor contribute to the circadian transcription of genes specifying acyl-CoA thioesterases, leading to a cyclic release of fatty acids from thioesters. In turn, the fatty acids act as ligands for PPARα, and the activated PPARα receptor then stimulates the transcription of genes encoding proteins involved in the uptake and/or metabolism of lipids, cholesterol, and glucose metabolism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Whereas during the last few years handling of the transcutaneous PO2 (tcPO2) and PCO2 (tcPCO2) sensor has been simplified, the high electrode temperature and the short application time remain major drawbacks. In order to determine whether the application of a topical metabolic inhibitor allows reliable measurement at a sensor temperature of 42 degrees C for a period of up to 12 h, we performed a prospective, open, nonrandomized study in a sequential sample of 20 critically ill neonates. A total of 120 comparisons (six repeated measurements per patient) between arterial and transcutaneous values were obtained. Transcutaneous values were measured with a control sensor at 44 degrees C (conventional contact medium, average application time 3 h) and a test sensor at 42 degrees C (Eugenol solution, average application time 8 h). Comparison of tcPO2 and PaO2 at 42 degrees C (Eugenol solution) showed a mean difference of +0.16 kPa (range +1.60 to -2.00 kPa), limits of agreement +1.88 and -1.56 kPa. Comparison of tcPO2 and PaO2 at 44 degrees C (control sensor) revealed a mean difference of +0.02 kPa (range +2.60 to -1.90 kPa), limits of agreement +2.12 and -2.08 kPa. Comparison of tcPCO2 and PaCO2 at 42 degrees C (Eugenol solution) showed a mean difference of +0.91 (range +2.30 to +0.10 kPa), limits of agreement +2.24 and -0.42 kPa. Comparison of tcPCO2 and PaCO2 at 44 degrees C (control sensor) revealed a mean difference of +0.63 kPa (range 1.50 to -0.30 kPa), limits of agreement +1.73 and -0.47 kPa. CONCLUSION: Our results show that the use of an Eugenol solution allows reliable measurement of tcPO2 at a heating temperature of 42 degrees C; the application time can be prolongued up to a maximum of 12 h without aggravating the skin lesions. The performance of the tcPCO2 monitor was slightly worse at 42 degrees C than at 44 degrees C suggesting that for the Eugenol solution the metabolic offset should be corrected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since GHB (gamma-hydroxybutyric acid) is naturally produced in the human body, clinical and forensic toxicologists must be able to discriminate between endogenous levels and a concentration resulting from exposure. To suggest an alternative to the use of interpretative concentration cut-offs, the detection of exogenous GHB in urine specimens was investigated by means of gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). GHB was isolated from urinary matrix by successive purification on Oasis MCX and Bond Elute SAX solid-phase extraction (SPE) cartridges prior to high-performance liquid chromatography (HPLC) fractioning using an Atlantis dC18 column eluted with a mixture of formic acid and methanol. Subsequent intramolecular esterification of GHB leading to the formation of gamma-butyrolactone (GBL) was carried out to avoid introduction of additional carbon atoms for carbon isotopic ratio analysis. A precision of 0.3 per thousand was determined using this IRMS method for samples at GHB concentrations of 10 mg/L. The (13)C/(12)C ratios of GHB in samples of subjects exposed to the drug ranged from -32.1 to -42.1 per thousand, whereas the results obtained for samples containing GHB of endogenous origin at concentration levels less than 10 mg/L were in the range -23.5 to -27.0 per thousand. Therefore, these preliminary results show that a possible discrimination between endogenous and exogenous GHB can be made using carbon isotopic ratio analyses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims/Hypothesis: Glitazones are powerful insulin sensitisers prescribed for the treatment of type 2 diabetes. Their use is, however, associated with fluid retention and an increased risk of congestive heart failure. We previously demonstrated that pioglitazone increases proximal sodium reabsorption in healthy volunteers. This study examines the effects of pioglitazone on renal sodium handling in individuals prone to insulin resistance, i.e. those with diabetes and/or hypertension. Methods: In this double-blind randomised placebo-controlled four-way crossover study, we examined the effects of pioglitazone (45 mg daily during 6 weeks) or placebo on renal, systemic and hormonal responses to changes in sodium intake in 16 individuals, eight with type 2 diabetes and eight with hypertension. Results: Pioglitazone was associated with a rapid increase in body weight and an increase in diurnal proximal sodium reabsorption, without any change in renal haemodynamics or in the modulation of the renin-angiotensin aldosterone system to changes in salt intake. A compensatory increase in brain natriuretic peptide levels was observed. In spite of sodium retention, pioglitazone dissociated the blood-pressure response to salt and abolished salt sensitivity in salt-sensitive individuals. Conclusions/Interpretation: Pioglitazone increases diurnal proximal sodium retention in diabetic and hypertensive individuals. These effects cause fluid retention and may contribute to the increased incidence of congestive heart failure with glitazones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND AIMS: Marked changes in metabolism, including liver steatosis and hypoglycemia, occur after partial hepatectomy. Peroxisome proliferator-activated receptor alpha (PPAR alpha) is a nuclear hormone receptor that is activated by fatty acids and involved in hepatic fatty acid metabolism and regeneration. Liver fatty acid binding protein (LFABP) is an abundant protein in liver cytosol whose expression is regulated by PPAR alpha. It is involved in fatty acid uptake and diffusion and in PPAR alpha signaling. The aim of this study was to investigate the expression of PPAR alpha and LFABP during liver regeneration. METHODS: Male Sprague-Dawley rats and male C57 Bl/6 mice were subjected to 2/3 hepatectomy and LFABP and PPAR alpha mRNA and protein levels were measured at different time points after surgery. The effect of partial hepatectomy was followed during 48 h in rats and 72 h in mice. RESULTS: PPAR alpha mRNA and protein levels were decreased 26 h after hepatectomy of rats. The LFABP mRNA and protein levels paralleled those of PPAR alpha and were also decreased 26 h after hepatectomy. In mice, the mRNA level was decreased after 36 and 72 h after hepatectomy. In this case, LFABP mRNA levels decreased more slowly after partial hepatectomy than in rats. CONCLUSIONS: A marked decrease in PPAR alpha expression may be important for changed gene expression, e.g. LFABP, and metabolic changes, such as hypoglycemia, during liver regeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transfer factor for carbon monoxide (TLCO) is widely used in pulmonary function laboratories because it represents a unique non-invasive window on pulmonary microcirculation. The TLCO is the product of two primary measurements, the alveolar volume (VA) and the CO transfer coefficient (KCO). This test is most informative when VA and KCO are examined, together with their product TLCO. In a normal lung, a low VA due to incomplete expansion is associated with an elevated KCO, resulting in a mildly reduced TLCO. Thus, in case of low VA, a seemingly "normal KCO" must be interpreted as an abnormal gas transfer. The most common clinical conditions associated with an abnormal TLCO are characterised by a limited number of patterns for VA and KCO: incomplete lung expansion, discrete loss of alveolar units, diffuse loss of alveolar units, emphysema, pulmonary vascular disorders, high pulmonary blood volume, alveolar haemorrhage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Macrophages play a central role in the pathogenesis of atherosclerosis by accumulating cholesterol through increased uptake of oxidized low-density lipoproteins by scavenger receptor CD36, leading to foam cell formation. Here we demonstrate the ability of hexarelin, a GH-releasing peptide, to enhance the expression of ATP-binding cassette A1 and G1 transporters and cholesterol efflux in macrophages. These effects were associated with a transcriptional activation of nuclear receptor peroxisome proliferator-activated receptor (PPAR)gamma in response to binding of hexarelin to CD36 and GH secretagogue-receptor 1a, the receptor for ghrelin. The hormone binding domain was not required to mediate PPARgamma activation by hexarelin, and phosphorylation of PPARgamma was increased in THP-1 macrophages treated with hexarelin, suggesting that the response to hexarelin may involve PPARgamma activation function-1 activity. However, the activation of PPARgamma by hexarelin did not lead to an increase in CD36 expression, as opposed to liver X receptor (LXR)alpha, suggesting a differential regulation of PPARgamma-targeted genes in response to hexarelin. Chromatin immunoprecipitation assays showed that, in contrast to a PPARgamma agonist, the occupancy of the CD36 promoter by PPARgamma was not increased in THP-1 macrophages treated with hexarelin, whereas the LXRalpha promoter was strongly occupied by PPARgamma in the same conditions. Treatment of apolipoprotein E-null mice maintained on a lipid-rich diet with hexarelin resulted in a significant reduction in atherosclerotic lesions, concomitant with an enhanced expression of PPARgamma and LXRalpha target genes in peritoneal macrophages. The response was strongly impaired in PPARgamma(+/-) macrophages, indicating that PPARgamma was required to mediate the effect of hexarelin. These findings provide a novel mechanism by which the beneficial regulation of PPARgamma and cholesterol metabolism in macrophages could be regulated by CD36 and ghrelin receptor downstream effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a global approach combining fluorescence recovery after photobleaching (FRAP), fluorescence correlation spectroscopy (FCS), and fluorescence resonance energy transfer (FRET), we address the behavior in living cells of the peroxisome proliferator-activated receptors (PPARs), a family of nuclear receptors involved in lipid and glucose metabolism, inflammation control, and wound healing. We first demonstrate that unlike several other nuclear receptors, PPARs do not form speckles upon ligand activation. The subnuclear structures that may be observed under some experimental conditions result from overexpression of the protein and our immunolabeling experiments suggest that these structures are subjected to degradation by the proteasome. Interestingly and in contrast to a general assumption, PPARs readily heterodimerize with retinoid X receptor (RXR) in the absence of ligand in living cells. PPAR diffusion coefficients indicate that all the receptors are engaged in complexes of very high molecular masses and/or interact with relatively immobile nuclear components. PPARs are not immobilized by ligand binding. However, they exhibit a ligand-induced reduction of mobility, probably due to enhanced interactions with cofactors and/or chromatin. Our study draws attention to the limitations and pitfalls of fluorescent chimera imaging and demonstrates the usefulness of the combination of FCS, FRAP, and FRET to assess the behavior of nuclear receptors and their mode of action in living cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study demonstrates that the expression of the peroxisome proliferator-activated receptor alpha (PPAR alpha) is regulated by glucocorticoid hormones in hepatocytes. Hydrocortisone, dexamethasone, and triamcinolone stimulated PPAR alpha mRNA synthesis in a dose-dependent manner in primary rat hepatocyte cultures. This glucocorticoid stimulation was inhibited by RU 486, a specific glucocorticoid antagonist. Moreover, in contrast to glucocorticoid hormones, the mineralocorticoid aldosterone had only a weak effect, suggesting that the hormonal stimulation of PPAR alpha was mediated by the glucocorticoid receptor. The induction was not prevented by cycloheximide treatment of the hepatocytes, indicating that it was mediated by preexisting glucocorticoid receptor. Finally, the RNA synthesis inhibitor actinomycin D abolished the stimulatory effect of dexamethasone, and nuclear run-on analysis showed an increase of PPAR alpha transcripts after hormonal induction. Thus, the PPAR alpha gene is an early response gene of glucocorticoids that control its expression at the transcriptional level.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic disorders, such as obesity, diabetes, inflammation, non-alcoholic fatty liver disease and atherosclerosis, are related to alterations in lipid and glucose metabolism, in which peroxisome proliferator-activated receptors (PPAR)α, PPARβ/δ and PPARγ are involved. These receptors form a subgroup of ligand-activated transcription factors that belong to the nuclear hormone receptor family. This review discusses a selection of novel PPAR functions identified during the last few years. The PPARs regulate processes that are essential for the maintenance of pregnancy and embryonic development. Newly found hepatic functions of PPARα are the mediation of female-specific gene repression and the protection of the liver from oestrogen induced toxicity. PPARα also controls lipid catabolism and is the target of hypolipidaemic drugs, whereas PPARγ controls adipocyte differentiation and regulates lipid storage; it is the target for the insulin sensitising thiazolidinediones used to treat type 2 diabetes. Activation of PPARβ/δ increases lipid catabolism in skeletal muscle, the heart and adipose tissue. In addition, PPARβ/δ ligands prevent weight gain and suppress macrophage derived inflammation. In fact, therapeutic benefits of PPAR ligands have been confirmed in inflammatory and autoimmune diseases, such as encephalomyelitis and inflammatory bowel disease. Furthermore, PPARs promote skin wound repair. PPARα favours skin healing during the inflammatory phase that follows injury, whilst PPARβ/δ enhances keratinocyte survival and migration. Due to their collective functions in skin, PPARs represent a major research target for our understanding of many skin diseases. Taken altogether, these functions suggest that PPARs serve as physiological sensors in different stress situations and remain valuable targets for innovative therapies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: carbon nanotubes (CNT) can have adverse effects on health. Therefore, minimizing the risk associated with CNT exposure is of crucial importance. The aim of this work was to evaluate if coating multi-walled CNT (MWCNT) with polymers could modify their toxicity, thus representing a useful strategy to decrease adverse health effects of CNT. We used industrially-produced MWCNT uncoated (NT1) or coated (50/50 wt%) with acid-based (NT2) or polystyrene-based (NT3) polymer, and exposed murine macrophages (RAW 264.7 cell line) or Balb/c mice by intratracheal administration. Biological experiments were performed both in vitro and in vivo, examining time- and dose-dependent effects of CNT, in terms of cytotoxicity, expression of genes and proteins related to oxidative stress, inflammation and tissue remodeling, cell and lung tissue morphology (optical and transmission electron microscopy), and bronchoalveolar lavage fluid content analysis.RESULTS: extensive physico-chemical characterization of MWCNT was performed, and showed, although similar dimensions for the 3 MWCNT, a much smaller specific surface area for NT2 and NT3 as compared to NT1 (54.1, 34 and 227.54 m(2)/g respectively), along with different surface characteristics. MWCNT-induced cytotoxicity, oxidative stress, and inflammation were increased by acid-based and decreased by polystyrene-based polymer coating both in vitro in murine macrophages and in vivo in lung of mice monitored for 6 months.CONCLUSIONS: these results demonstrate that coating CNT with polymers, without affecting their intrinsic structure, may constitute a useful strategy for decreasing CNT toxicity, and may hold promise for improving occupational safety and that of general the user.