117 resultados para Caatinga animals - Conservation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Genes involved in arbuscular mycorrhizal (AM) symbiosis have been identified primarily by mutant screens, followed by identification of the mutated genes (forward genetics). In addition, a number of AM-related genes has been identified by their AM-related expression patterns, and their function has subsequently been elucidated by knock-down or knock-out approaches (reverse genetics). However, genes that are members of functionally redundant gene families, or genes that have a vital function and therefore result in lethal mutant phenotypes, are difficult to identify. If such genes are constitutively expressed and therefore escape differential expression analyses, they remain elusive. The goal of this study was to systematically search for AM-related genes with a bioinformatics strategy that is insensitive to these problems. The central element of our approach is based on the fact that many AM-related genes are conserved only among AM-competent species. RESULTS: Our approach involves genome-wide comparisons at the proteome level of AM-competent host species with non-mycorrhizal species. Using a clustering method we first established orthologous/paralogous relationships and subsequently identified protein clusters that contain members only of the AM-competent species. Proteins of these clusters were then analyzed in an extended set of 16 plant species and ranked based on their relatedness among AM-competent monocot and dicot species, relative to non-mycorrhizal species. In addition, we combined the information on the protein-coding sequence with gene expression data and with promoter analysis. As a result we present a list of yet uncharacterized proteins that show a strongly AM-related pattern of sequence conservation, indicating that the respective genes may have been under selection for a function in AM. Among the top candidates are three genes that encode a small family of similar receptor-like kinases that are related to the S-locus receptor kinases involved in sporophytic self-incompatibility. CONCLUSIONS: We present a new systematic strategy of gene discovery based on conservation of the protein-coding sequence that complements classical forward and reverse genetics. This strategy can be applied to diverse other biological phenomena if species with established genome sequences fall into distinguished groups that differ in a defined functional trait of interest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Combining nuclear (nuDNA) and mitochondrial DNA (mtDNA) markers has improved the power of molecular data to test phylogenetic and phylogeographic hypotheses and has highlighted the limitations of studies using only mtDNA markers. In fact, in the past decade, many conflicting geographic patterns between mitochondrial and nuclear genetic markers have been identified (i.e. mito-nuclear discordance). Our goals in this synthesis are to: (i) review known cases of mito-nuclear discordance in animal systems, (ii) to summarize the biogeographic patterns in each instance and (iii) to identify common drivers of discordance in various groups. In total, we identified 126 cases in animal systems with strong evidence of discordance between the biogeographic patterns obtained from mitochondrial DNA and those observed in the nuclear genome. In most cases, these patterns are attributed to adaptive introgression of mtDNA, demographic disparities and sex-biased asymmetries, with some studies also implicating hybrid zone movement, human introductions and Wolbachia infection in insects. We also discuss situations where divergent mtDNA clades seem to have arisen in the absence of geographic isolation. For those cases where foreign mtDNA haplotypes are found deep within the range of a second taxon, data suggest that those mtDNA haplotypes are more likely to be at a high frequency and are commonly driven by sex-biased asymmetries and/or adaptive introgression. In addition, we discuss the problems with inferring the processes causing discordance from biogeographic patterns that are common in many studies. In many cases, authors presented more than one explanation for discordant patterns in a given system, which indicates that likely more data are required. Ideally, to resolve this issue, we see important future work shifting focus from documenting the prevalence of mito-nuclear discordance towards testing hypotheses regarding the drivers of discordance. Indeed, there is great potential for certain cases of mitochondrial introgression to become important natural systems within which to test the effect of different mitochondrial genotypes on whole-animal phenotypes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to practical difficulties in obtaining direct genetic estimates of effective sizes, conservation biologists have to rely on so-called 'demographic models' which combine life-history and mating-system parameters with F-statistics in order to produce indirect estimates of effective sizes. However, for the same practical reasons that prevent direct genetic estimates, the accuracy of demographic models is difficult to evaluate. Here we use individual-based, genetically explicit computer simulations in order to investigate the accuracy of two such demographic models aimed at investigating the hierarchical structure of populations. We show that, by and large, these models provide good estimates under a wide range of mating systems and dispersal patterns. However, one of the models should be avoided whenever the focal species' breeding system approaches monogamy with no sex bias in dispersal or when a substructure within social groups is suspected because effective sizes may then be strongly overestimated. The timing during the life cycle at which F-statistics are evaluated is also of crucial importance and attention should be paid to it when designing field sampling since different demographic models assume different timings. Our study shows that individual-based, genetically explicit models provide a promising way of evaluating the accuracy of demographic models of effective size and delineate their field of applicability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ionotropic glutamate receptors (iGluRs) mediate neuronal communication at synapses throughout vertebrate and invertebrate nervous systems. We have characterized a family of iGluR-related genes in Drosophila, which we name ionotropic receptors (IRs). These receptors do not belong to the well-described kainate, AMPA, or NMDA classes of iGluRs, and they have divergent ligand-binding domains that lack their characteristic glutamate-interacting residues. IRs are expressed in a combinatorial fashion in sensory neurons that respond to many distinct odors but do not express either insect odorant receptors (ORs) or gustatory receptors (GRs). IR proteins accumulate in sensory dendrites and not at synapses. Misexpression of IRs in different olfactory neurons is sufficient to confer ectopic odor responsiveness. Together, these results lead us to propose that the IRs comprise a novel family of chemosensory receptors. Conservation of IR/iGluR-related proteins in bacteria, plants, and animals suggests that this receptor family represents an evolutionarily ancient mechanism for sensing both internal and external chemical cues.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The amygdala is part of a neural network that contributes to the regulation of emotional behaviors. Rodents, especially rats, are used extensively as model organisms to decipher the functions of specific amygdala nuclei, in particular in relation to fear and emotional learning. Analysis of the role of the nonhuman primate amygdala in these functions has lagged work in the rodent but provides evidence for conservation of basic functions across species. Here we provide quantitative information regarding the morphological characteristics of the main amygdala nuclei in rats and monkeys, including neuron and glial cell numbers, neuronal soma size, and individual nuclei volumes. The volumes of the lateral, basal, and accessory basal nuclei were, respectively, 32, 39, and 39 times larger in monkeys than in rats. In contrast, the central and medial nuclei were only 8 and 4 times larger in monkeys than in rats. The numbers of neurons in the lateral, basal, and accessory basal nuclei were 14, 11, and 16 times greater in monkeys than in rats, whereas the numbers of neurons in the central and medial nuclei were only 2.3 and 1.5 times greater in monkeys than in rats. Neuron density was between 2.4 and 3.7 times lower in monkeys than in rats, whereas glial density was only between 1.1 and 1.7 times lower in monkeys than in rats. We compare our data in rats and monkeys with those previously published in humans and discuss the theoretical and functional implications that derive from our quantitative structural findings.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The analysis of conservation between the human and mouse genomes resulted in the identification of a large number of conserved nongenic sequences (CNGs). The functional significance of this nongenic conservation remains unknown, however. The availability of the sequence of a third mammalian genome, the dog, allows for a large-scale analysis of evolutionary attributes of CNGs in mammals. We have aligned 1638 previously identified CNGs and 976 conserved exons (CODs) from human chromosome 21 (Hsa21) with their orthologous sequences in mouse and dog. Attributes of selective constraint, such as sequence conservation, clustering, and direction of substitutions were compared between CNGs and CODs, showing a clear distinction between the two classes. We subsequently performed a chromosome-wide analysis of CNGs by correlating selective constraint metrics with their position on the chromosome and relative to their distance from genes. We found that CNGs appear to be randomly arranged in intergenic regions, with no bias to be closer or farther from genes. Moreover, conservation and clustering of substitutions of CNGs appear to be completely independent of their distance from genes. These results suggest that the majority of CNGs are not typical of previously described regulatory elements in terms of their location. We propose models for a global role of CNGs in genome function and regulation, through long-distance cis or trans chromosomal interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: Recent work practices in the conservation and restoration involve the use of cyclododecane (CDD, CAS 294-62-2) to protect fragile artifacts during their handling or transportation. Little is known about its toxicity, and no previous exposure has been reported. A short field investigation was conducted to characterize the exposure conditions to both CDD vapors and aerosols.METHODS: Measurements were conducted in the laboratory of conservation and restoration of the archeological service in Bern (Switzerland). Three indoor and four outdoor typical work situations, either during brush or spray gun applications, were investigated. Measurements were performed on charcoal adsorbent tube and analyzed by a gas chromatograph equipped with a flame ionization detector.RESULTS: Measurements have been conducted during both brush and spray gun applications. Indoor exposures were of 0.75-15.5 mg/m(3), while outdoors exposures were 19.5-53.9 mg/m(3). Exposures appear to be extremely localized due to both physicochemical properties and application methods of the CDD. Vapor exposure increases dramatically with the confinement of the workplace.CONCLUSION: Preventive measures should be undertaken to limit as much as possible these exposures. Field work in confined areas (ditches, underground) is of particular concern. CDD-coated artifacts or materials should be stored in ventilated areas to avoid delayed exposures. [Authors]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The traditionally coercive and state-controlled governance of protected areas for nature conservation in developing countries has in many cases undergone change in the context of widespread decentralization and liberalization. This article examines an emerging "mixed" (coercive, community- and market-oriented) conservation approach in managed-resource protected areas and its effects on state power through a case study on forest protection in the central Indian state of Madhya Pradesh. The findings suggest that imperfect decentralization and partial liberalization resulted in changed forms, rather than uniform loss, of state power. A forest co-management program paradoxically strengthened local capacity and influence of the Forest Department, which generally maintained its territorial and knowledge-based control over forests and timber management. Furthermore, deregulation and reregulation enabled the state to withdraw from uneconomic activities but also implied reduced place-based control of non-timber forest products. Generally, the new policies and programs contributed to the separation of livelihoods and forests in Madhya Pradesh. The article concludes that regulatory, community- and market-based initiatives would need to be better coordinated to lead to more effective nature conservation and positive livelihood outcomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

n the last two decades, interest in species distribution models (SDMs) of plants and animals has grown dramatically. Recent advances in SDMs allow us to potentially forecast anthropogenic effects on patterns of biodiversity at different spatial scales. However, some limitations still preclude the use of SDMs in many theoretical and practical applications. Here, we provide an overview of recent advances in this field, discuss the ecological principles and assumptions underpinning SDMs, and highlight critical limitations and decisions inherent in the construction and evaluation of SDMs. Particular emphasis is given to the use of SDMs for the assessment of climate change impacts and conservation management issues. We suggest new avenues for incorporating species migration, population dynamics, biotic interactions and community ecology into SDMs at multiple spatial scales. Addressing all these issues requires a better integration of SDMs with ecological theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The three subtypes of the peroxisome proliferator-activated receptors (PPARalpha, beta/delta, and gamma) form heterodimers with the 9-cis-retinoic acid receptor (RXR) and bind to a common consensus response element, which consists of a direct repeat of two hexanucleotides spaced by one nucleotide (DR1). As a first step toward understanding the molecular mechanisms determining PPAR subtype specificity, we evaluated by electrophoretic mobility shift assays the binding properties of the three PPAR subtypes, in association with either RXRalpha or RXRgamma, on 16 natural PPAR response elements (PPREs). The main results are as follows. (i) PPARgamma in combination with either RXRalpha or RXRgamma binds more strongly than PPARalpha or PPARbeta to all natural PPREs tested. (ii) The binding of PPAR to strong elements is reinforced if the heterodimerization partner is RXRgamma. In contrast, weak elements favor RXRalpha as heterodimerization partner. (iii) The ordering of the 16 natural PPREs from strong to weak elements does not depend on the core DR1 sequence, which has a relatively uniform degree of conservation, but correlates with the number of identities of the 5'-flanking nucleotides with respect to a consensus element. This 5'-flanking sequence is essential for PPARalpha binding and thus contributes to subtype specificity. As a demonstration of this, the PPARgamma-specific element ARE6 PPRE is able to bind PPARalpha only if its 5'-flanking region is exchanged with that of the more promiscuous HMG PPRE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When sex determination in a species is predominantly genetic but environmentally reversible, exposure to (anthropogenic) changes in the environment can lead to shifts in a population's sex ratio. Such scenarios may be common in many fishes and amphibians, yet their ramifications remain largely unexplored. We used a simple model to study the (short-term) population consequences of environmental sex reversal (ESR). We examined the effects on sex ratios, sex chromosome frequencies, and population growth and persistence after exposure to environmental forces with feminizing or masculinizing tendencies. When environmental feminization was strong, X chromosomes were driven to extinction. Analogously, extinction of normally male-linked genetic factors (e.g., Y chromosomes) was caused by continuous environmental masculinization. Although moderate feminization was beneficial for population growth in the absence of large viability effects, our results suggest that the consequences of ESR are generally negative in terms of population size and the persistence of sex chromosomes. Extreme sex ratios resulting from high rates of ESR also reduced effective population sizes considerably. This may limit any evolutionary response to the deleterious effects of ESR. Our findings suggest that ESR changes population growth and sex ratios in some counter-intuitive ways and can change the predominant factor in sex determination from genetic to fully environmental, often within only a few tens of generations. Populations that lose genetic sex determination may quickly go extinct if the environmental forces that cause sex reversal cease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most amphibians examined so far show undifferentiated sex chromosomes. The heterogametic sex's identity, usually revealed through indirect means, often varies among closely related species or even populations (as do sex-linkage groups), suggesting great evolutionary instability of the sex-determining genes. Here we take advantage of a sex-specific marker that amplifies in several related species of European tree frogs (Hyla arborea group) to disclose a homogeneous pattern of male heterogamety. Besides relevance for evolutionary studies of sex determination in amphibians, our results have potential for addressing practical issues in conservation biology because sex reversal by anthropogenic endocrine disruptors is considered one possible cause of amphibian decline.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The monogenetic kinetoplastid protozoan parasite Herpetomonas samuelpessoai expresses a surface-exposed metalloprotease. Comparable to the Leishmania promastigote surface protease, or PSP, the protease of Herpetomonas is active at the surface of fixed and live organisms, and both enzymes display an identical cleavage specificity toward a nonapeptide substrate. The protease was enriched 440 times by partition into Triton X-114 followed by 2 steps of anion exchange chromatography. The 56-kDa enzyme is inhibited by the metal chelator 1,10-phenanthroline and is susceptible to cleavage by glycosyl-phosphatidylinositol phospholipase C (GPI-PLC). The conservation of an identical surface protease activity in these monogenetic and digenetic trypanosomatids suggests that the enzyme has a physiological function in the promastigote (insect) stage of these parasites.