60 resultados para CHIRAL SYMMETRY
Resumo:
Stereochemistry is now influencing most areas of pharmacotherapy, with a growing awareness in the field of psychiatry and, more specifically, depression. This is due to the fact that the enantiomers of many chiral drugs may have distinct pharmacological, pharmacokinetic and/or pharmacogenetic profiles. Consequently, in some instances there may be an advantage in using a single enantiomer over the racemic form-thus providing a basis for the development of new therapeutic agents, as well as the potential to improve current treatments. This review highlights some of the potential advantages and disadvantages that using single enantiomers might offer. The principles are exemplified through reference to the stereoselective properties of several established chiral psychotropic drugs, including thioridazine, methadone, trimipramine, mianserin, mirtazapine, fluoxetine and citalopram. Emphasis is given to the treatment of depression and how the potential of one pure enantiomer-escitalopram, the S-enantiomer of the selective serotonin reuptake inhibitor citalopram-appears to be fulfilling its preclinical promise in the clinic.
Resumo:
The basic photosynthetic unit containing the reaction centre and the light-harvesting I complex (RC-LHI) of the purple non-sulphur bacterium Rhodospirillum rubrum was purified and reconstituted into two-dimensional (2D) membrane crystals. Transmission electron microscopy using conventional techniques and cryoelectron microscopy of the purified single particles and of 2D crystals yielded a projection of the RC-LHI complex at a resolution of at least 1.6 nm. In this projection the LHI ring appears to have a square symmetry and packs in a square crystal lattice. The square geometry of the LHI ring was observed also in images of single isolated particles of the RC-LHI complex. However, although the LHI units are packed identically within the crystal lattice, a new rotational analysis developed here showed that the reaction centres take up one of four possible orientations within the ring. This fourfold disorder supports our interpretation of a square ring symmetry and suggests that a hitherto undetected component may be present within the photosynthetic unit.
Resumo:
The chiral antidepressant venlafaxine (VEN) is both a serotonin and a norepinephrine uptake inhibitor. CYP2D6 and CYP3A4 contribute to its metabolism, which has been shown to be stereoselective. Ten CYP2D6 genotyped and depressive (F32x and F33x, ICD-10) patients participated in an open study on the pharmacokinetic and pharmacodynamic consequences of a carbamazepine augmentation in VEN non-responders. After an initial 4-week treatment with VEN (195 +/- 52 mg/day), the only poor metabolizer out of 10 depressive patients had the highest plasma concentrations of S-VEN and R-VEN, respectively, whereas those of R-O-demethyl-VEN were lowest. Five non-responders completed the second 4-week study period, during which they were submitted to a combined VEN-carbamazepine treatment. In the only non-responder to this combined treatment, there was a dramatic decrease of both enantiomers of VEN, O-demethylvenlafaxine, N-desmethylvenlafaxine and N, O-didesmethylvenlafaxine in plasma, which suggests non-compliance, although metabolic induction by carbamazepine cannot entirely be excluded. The administration of carbamazepine [mean +/- SD, range: 360 +/- 89 (200-400) mg/day] over 4 weeks did not result in a significant modification of the plasma concentrations of the enantiomers of VEN and its O- and N-demethylated metabolites in the other patients. In conclusion, these preliminary observations suggest that the combination of VEN and carbamazepine represents an interesting augmentation strategy by its efficacy, tolerance and absence of pharmacokinetic modifications. However, these findings should be verified in a more comprehensive study.
Resumo:
Résumé L'antidépresseur chiral venlafaxine (VEN) est à la fois un inhibiteur de la récapture de la sérotonine et de la noradrénaline. Le CYP2D6 et le CYP3A4 contribuent à son métabolisme stéreosélectif. Dix patients génotypés au CYP2D6 et dépressifs (F32x et F33x, ICD-10) ont participé à cette étude ouverte sur les conséquences pharmacocinétiques et pharmacodynamiques d'une « augmentation » avec la carbamazepine chez des non-répondeurs à la venlafaxine. Après une première période de traitement de quatre semaines avec VEN (195 - 52 mg/ jour), le seul patient qui présentait un déficience génétique de CYP2D6 (poor metaboliser), avait les taux plasmatiques de S-VEN et R-VEN les plus élevés, tandis que ceux de R-0-déméthyl-VEN étaient les plus bas dans ce groupe. Comme seulement 4 patients ont été des répondeurs après 4 semaines de traitement, 6 patients ont été inclus dans la deuxième période de traitement combiné VEN et carbamazépine. Cinq patients non-répondeurs ont complété cette deuxième période d'étude de quatre semaines. Chez l'unique non-répondeur au traitement combiné, on pouvait observer à la fin de la période d'étude une diminution importante des deux énantiomères de VEN, 0-desmethy'lvenlafaxine (ODV), N-desmethylvenlafaxine (NDV) et N, 0-didesmethylvenlafaxine (NODV) dans le plasma. Cela suggère un manque de compliance chez ce patient, mais une induction métabolique par la carbamazepine ne peut pas être exclue entièrement. L'administration de la carbamazepine (moyen ± s.d. (range) ; 360 ± 89 (200-400) mg/jour)) pendant quatre semaines n'a pas eu comme résultat une modification significative des concentrations plasmatiques des énantiomères de VEN et de ses métabolites 0- et N-démethylés chez les autres patients. En conclusion, ces observations préliminaires suggèrent qu'une combinaison de VEN et de carbamazepine représente une stratégie intéressante par son efficacité, sa tolérance et l'absence de modifications pharmcocinétiques, mais ces résultats devraient être vérifiés dans une plus grande étude.
Resumo:
Introduction An impaired ability to oxidize fat may be a factor in the obesity's aetiology (3). Moreover, the exercise intensity (Fatmax) eliciting the maximal fat oxidation rate (MFO) was lower in obese (O) compared with lean (L) individuals (4). However, difference in fat oxidation rate (FOR) during exercise between O and L remains equivocal and little is known about FORs during high intensities (>60% ) in O compared with L. This study aimed to characterize fat oxidation kinetics over a large range of intensities in L and O. Methods 12 healthy L [body mass index (BMI): 22.8±0.4] and 16 healthy O men (BMI: 38.9±1.4) performed submaximal incremental test (Incr) to determine whole-body fat oxidation kinetics using indirect calorimetry. After a 15-min resting period (Rest) and 10-min warm-up at 20% of maximal power output (MPO, determined by a maximal incremental test), the power output was increased by 7.5% MPO every 6-min until respiratory exchange ratio reached 1.0. Venous lactate and glucose and plasma concentration of epinephrine (E), norepinephrine (NE), insulin and non-esterified fatty acid (NEFA) were assessed at each step. A mathematical model (SIN) (1), including three variables (dilatation, symmetry, translation), was used to characterize fat oxidation (normalized by fat-free mass) kinetics and to determine Fatmax and MFO. Results FOR at Rest and MFO were not significantly different between groups (p≥0.1). FORs were similar from 20-60% (p≥0.1) and significantly lower from 65-85% in O than in L (p≤0.04). Fatmax was significantly lower in O than in L (46.5±2.5 vs 56.7±1.9 % respectively; p=0.005). Fat oxidation kinetics was characterized by similar translation (p=0.2), significantly lower dilatation (p=0.001) and tended to a left-shift symmetry in O compared with L (p=0.09). Plasma E, insulin and NEFA were significantly higher in L compared to O (p≤0.04). There were no significant differences in glucose, lactate and plasma NE between groups (p≥0.2). Conclusion The study showed that O presented a lower Fatmax and a lower reliance on fat oxidation at high, but not at moderate, intensities. This may be linked to a: i) higher levels of insulin and lower E concentrations in O, which may induce blunted lipolysis; ii) higher percentage of type II and a lower percentage of type I fibres (5), and iii) decreased mitochondrial content (2), which may reduce FORs at high intensities and Fatmax. These findings may have implications for an appropriate exercise intensity prescription for optimize fat oxidation in O. References 1. Cheneviere et al. Med Sci Sports Exerc. 2009 2. Holloway et al. Am J Clin Nutr. 2009 3. Kelley et al. Am J Physiol. 1999 4. Perez-Martin et al. Diabetes Metab. 2001 5. Tanner et al. Am J Physiol Endocrinol Metab. 2002
Resumo:
The Radiello Passive Air Sampler is one of the latest innovations developed for the sampling of pollutants in the air by passive headspace. It has been reported that its properties allow an enhanced sensitivity, reproducibility and adsorption capacity. It therefore appears to be of interest in the extraction of potential residues of ignitable liquids present in fire debris when arson is suspected. A theoretical approach and several laboratory tests have made it possible to precisely characterize in a forensic perspective the potential of the device in extracting and concentrating the vapors of ignitable liquids found in fire debris. Despite some advantages, the Radiello device appears to be less efficient than traditional axial symmetry samplers.
Resumo:
The relationship between sperm velocity and individual age, size, body condition and fluctuating asymmetry was investigated in Alpine whitefish Coregonus fatioi. The fish analysed belonged to one among several sympatric whitefish populations of Lake Thun, Switzerland, which are characterized by a high prevalence of gonad alterations. Therefore, sperm velocity data were also tested for a link between gonad deformation and sperm swimming speed. Sperm velocity was significantly lower in larger-grown individuals and in individuals of higher body condition. As expected, sperm velocity was higher in males with higher levels of fluctuating asymmetry, but it did not significantly vary with male age. Moreover, variation in sperm velocity was found to be significantly higher in individuals showing some types of gonad alterations but it did not significantly correlate with the presence of other types of alterations. (C) 2007 The Authors Journal compilation (C) 2007 The Fisheries Society of the British Isles.
Resumo:
Introduction Discrepancies appear in studies comparing fat oxidation between men and women during exercise (1). Therefore, this study aimed to quantitatively describe and compare whole body fat oxidation kinetics between genders during exercise using a sinusoidal model (SIN) (2). Methods Twelve men and 11 women matched for age, body mass index (23.4±0.6 kg.m-2 and 21.5±0.8 kg.m-2, respectively) and aerobic fitness [maximal oxygen uptake ( ) (58.5±1.6 mL.kg FFM-1.min-1 and 55.3±2.0 mL.kg FFM-1.min-1, respectively) and power output ( ) per kilogram of fat-free mass (FFM)] performed submaximal incremental tests (Incr) with 5-min stages and 7.5% increment on a cycle ergometer. Respiratory and HR values were averaged over the last 2 minutes of each stage. All female study participants were eumenorrheic, reported regular menstrual cycles (28.6 ± 0.8 days) and were not taking oral contraceptives (OC) or other forms of exogenous ovarian hormones. Women were studied in the early follicular phase (FP) of their menstrual cycle (between days 3 and 8, where day 1 is the first day of menses). Fat oxidation rates were determined using indirect calorimetry and plotted as a function of exercise intensity. The SIN model (2), which includes three independent variables (dilatation, symmetry, translation), was used to mathematically describe fat oxidation kinetics and to determine the intensity (Fatmax) eliciting the maximal fat oxidation (MFO). Results During Incr, women exhibited greater fat oxidation rates from 35 to 85% , MFO (6.6 ± 0.9 vs. 4.5 ± 0.3 mgkg FFM-1min-1) and Fatmax (58.1 ± 1.9 vs. 50.0 ± 2.7% ) (P<0.05) than men. While men and women showed similar global shapes of fat oxidation kinetics in terms of dilatation and symmetry (P>0.05), the fat oxidation curve tended to be shifted towards higher exercise intensities in women (rightward translation, P=0.08). Conclusion These results showed that women, eumenorrheic, not taking OC and tested in FP, have a greater reliance on fat oxidation than men during submaximal exercise, but they also indicate that this greater fat oxidation is shifted towards higher exercise intensities in women compared with men. References 1. Blaak E. Gender differences in fat metabolism. Curr Opin Clin Nutr Metab Care 4: 499-502, 2001. 2. Cheneviere X, Malatesta D, Peters EM, and Borrani F. A mathematical model to describe fat oxidation kinetics during graded exercise. Med Sci Sports Exerc 41: 1615-1625, 2009.
Resumo:
The present study aimed to examine the effects of a prior 1-hour continuous exercise bout (CONT) at an intensity (Fat(max)) that elicits the maximal fat oxidation (MFO) on the fat oxidation kinetics during a subsequent submaximal incremental test (IncrC). Twenty moderately trained subjects (9 men and 11 women) performed a graded test on a treadmill (Incr), with 3-minute stages and 1-km.h(-1) increments. Fat oxidation was measured using indirect calorimetry and plotted as a function of exercise intensity. A mathematical model (SIN) including 3 independent variables (dilatation, symmetry, and translation) was used to characterize the shape of fat oxidation kinetics and to determine Fat(max) and MFO. On a second visit, the subjects performed CONT at Fat(max) followed by IncrC. After CONT performed at 57% +/- 3% (means +/- SE) maximal oxygen uptake (Vo(2max)), the respiratory exchange ratio during IncrC was lower at every stage compared with Incr (P < .05). Fat(max) (56.4% +/- 2.3% vs 51.5% +/- 2.4% Vo(2max), P = .013), MFO (0.50 +/- 0.03 vs 0.40 +/- 0.03 g.min(-1), P < .001), and fat oxidation rates from 35% to 70% Vo(2max) (P < .05) were significantly greater during IncrC compared with Incr. However, dilatation and translation were not significantly different (P > .05), whereas symmetry tended to be greater in IncrC (P = .096). This study showed that the prior 1-hour continuous moderate-intensity exercise bout increased Fat(max), MFO, and fat oxidation rates over a wide range of intensities during the postexercise incremental test. Moreover, the shape of the postexercise fat oxidation kinetics tended to have a rightward asymmetry.
Resumo:
Sphingomonas paucimobilis B90A contains two variants, LinA1 and LinA2, of a dehydrochlorinase that catalyzes the first and second steps in the metabolism of hexachlorocyclohexanes (R. Kumari, S. Subudhi, M. Suar, G. Dhingra, V. Raina, C. Dogra, S. Lal, J. R. van der Meer, C. Holliger, and R. Lal, Appl. Environ. Microbiol. 68:6021-6028, 2002). On the amino acid level, LinA1 and LinA2 were 88% identical to each other, and LinA2 was 100% identical to LinA of S. paucimobilis UT26. Incubation of chiral alpha-hexachlorocyclohexane (alpha-HCH) with Escherichia coli BL21 expressing functional LinA1 and LinA2 S-glutathione transferase fusion proteins showed that LinA1 preferentially converted the (+) enantiomer, whereas LinA2 preferred the (-) enantiomer. Concurrent formation and subsequent dissipation of beta-pentachlorocyclohexene enantiomers was also observed in these experiments, indicating that there was enantioselective formation and/or dissipation of these enantiomers. LinA1 preferentially formed (3S,4S,5R,6R)-1,3,4,5,6-pentachlorocyclohexene, and LinA2 preferentially formed (3R,4R,5S,6S)-1,3,4,5,6-pentachlorocyclohexene. Because enantioselectivity was not observed in incubations with whole cells of S. paucimobilis B90A, we concluded that LinA1 and LinA2 are equally active in this organism. The enantioselective transformation of chiral alpha-HCH by LinA1 and LinA2 provides the first evidence of the molecular basis for the changed enantiomer composition of alpha-HCH in many natural environments. Enantioselective degradation may be one of the key processes determining enantiomer composition, especially when strains that contain only one of the linA genes, such as S. paucimobilis UT26, prevail.
Resumo:
The RuvB protein is induced in Escherichia coli as part of the SOS response to DNA damage. It is required for genetic recombination and the postreplication repair of DNA. In vitro, the RuvB protein promotes the branch migration of Holliday junctions and has a DNA helicase activity in reactions that require ATP hydrolysis. We have used electron microscopy, image analysis, and three-dimensional reconstruction to show that the RuvB protein, in the presence of ATP, forms a dodecamer on double-stranded DNA in which two stacked hexameric rings encircle the DNA and are oriented in opposite directions with D6 symmetry. Although helicases are ubiquitous and essential for many aspects of DNA repair, replication, and transcription, three-dimensional reconstruction of a helicase has not yet been reported, to our knowledge. The structural arrangement that is seen may be common to other helicases, such as the simian virus 40 large tumor antigen.
Resumo:
In the liver of oviparous vertebrates vitellogenin gene expression is controlled by estrogen. The nucleotide sequence of the 5' flanking region of the Xenopus laevis vitellogenin genes A1, A2, B1 and B2 has been determined. These sequences have been compared to each other and to the equivalent region of the chicken vitellogenin II and apo-VLDLII genes which are also expressed in the liver in response to estrogen. The homology between the 5' flanking region of the Xenopus genes B1 and B2 is higher than between the corresponding regions of the other closely related genes A1 and A2. Four short blocks of sequence homology which are present at equivalent positions in the vitellogenin genes of both Xenopus laevis and chicken are characterized. A short sequence with two-fold rotational symmetry (GGTCANNNTGACC) was found at similar positions upstream of the five vitellogenin genes and is also present in two copies close to the 5' end of the chicken apo-VLDLII gene. The possible functional significance of this sequence, common to liver estrogen-responsive genes, is discussed.
Resumo:
D-lactic acid in urine originates mainly from bacterial production in the intestinal tract. Increased D-lactate excretion as observed in patients affected by short bowel syndrome or necrotizing enterocolitis reflects D-lactic overproduction. Therefore, there is a need for a reliable and sensitive method able to detect D-lactic acid even at subclinical elevation levels. A new and highly sensitive method for the simultaneous determination of L- and D-lactic acid by a two-step procedure has been developed. This method is based on the concentration of lactic acid enantiomers from urine by supported liquid extraction followed by high-performance liquid chromatography-tandem mass spectrometry. The separation was achieved by the use of an Astec Chirobiotic? R chiral column under isocratic conditions. The calibration curves were linear over the ranges of 2-400 and 0.5-100 µmol/L respectively for L- and D-lactic acid. The limit of detection of D-lactic acid was 0.125 µmol/L and its limit of quantification was 0.5 µmol/L. The overall accuracy and precision were well within 10% of the nominal values. The developed method is suitable for production of reference values in children and could be applied for accurate routine analysis.
Resumo:
Monalysin was recently described as a novel pore-forming toxin (PFT) secreted by the Drosophila pathogen Pseudomonas entomophila. Recombinant monalysin is multimeric in solution, whereas PFTs are supposed to be monomeric until target membrane association. Monalysin crystals were obtained by the hanging-drop vapour-diffusion method using PEG 8000 as precipitant. Preliminary X-ray diffraction analysis revealed that monalysin crystals belonged to the monoclinic space group C2, with unit-cell parameters a = 162.4, b = 146.2, c = 144.4 Å, β = 122.8°, and diffracted to 2.85 Å resolution using synchrotron radiation. Patterson self-rotation analysis and Matthews coefficient calculation indicate that the asymmetric unit contains nine copies of monalysin. Heavy-atom derivative data were collected and a Ta6Br14 cluster derivative data set confirmed the presence of ninefold noncrystallographic symmetry.
Resumo:
Thioridazine is a commonly prescribed phenothiazine drug administered as a racemate and it is believed that its antipsychotic effect is mainly associated with (R)-thioridazine. A method based on high-performance liquid chromatography has been developed for the determination of the enantiomers of thioridazine and thioridazine 2-sulfone (THD 2-SO2 or sulforidazine) and of the enantiomers of the diastereoisomeric pairs of thioridazine 2-sulfoxide (THD 2-SO or mesoridazine) and thioridazine 5-sulfoxide (THD 5-SO) in the plasma of thioridazine-treated patients. The method involves sequential achiral and chiral HPLC. The limits of quantitation for total (R) + (S) concentrations were found to be 15 ng/ml for thioridazine and 5 ng/ml for its metabolites. The limits for the determination of the (R)/(S) ratios were found to be 60 ng/ml for racemic THD and 10 ng/ml for racemic THD 2-SO, THD 2-SO2, THD 5-SO (FE) and THD 5-SO (SE). The method has been used to determine the concentrations of the enantiomers of thioridazine and of its metabolites in the plasma of a patient treated with 100 mg of racemic thioridazine hydrochloride per os per day for 14 days. The results show a high enantioselectivity in the metabolism of this drug: the (R)/(S) ratios for THD, THD 2-SO (FE), THD 2-SO (SE), THD 2-SO2, THD 5-SO (FE) and THD 5-SO (SE) were found to be 3.90, 1.22, 6.10, 4.10, 0.09 and 28.0, respectively.