188 resultados para Breathing exercices
Resumo:
BACKGROUND AND PURPOSE: Sleep disordered breathing (SDB) is frequent in acute stroke patients and is associated with early neurologic worsening and poor outcome. Although continuous positive airway pressure (CPAP) effectively treats SDB, compliance is low. The objective of the present study was to assess the tolerance and the efficacy of a continuous high-flow-rate air administered through an open nasal cannula (transnasal insufflation, TNI), a less-intrusive method, to treat SDB in acute stroke patients. METHODS: Ten patients (age, 56.8 ± 10.7 years), with SDB ranging from moderate to severe (apnea-hypopnea index, AHI, >15/h of sleep) and on a standard sleep study at a mean of 4.8 ± 3.7 days after ischemic stroke (range, 1-15 days), were selected. The night after, they underwent a second sleep study while receiving TNI (18 L/min). RESULTS: TNI was well tolerated by all patients. For the entire group, TNI decreased the AHI from 40.4 ± 25.7 to 30.8 ± 25.7/h (p = 0.001) and the oxygen desaturation index >3% from 40.7 ± 28.4 to 31 ± 22.5/h (p = 0.02). All participants except one showed a decrease in AHI. The percentage of slow-wave sleep significantly increased with TNI from 16.7 ± 8.2% to 22.3 ± 7.4% (p = 0.01). There was also a trend toward a reduction in markers of sleep disruption (number of awakenings, arousal index). CONCLUSIONS: TNI improves SDB indices, and possibly sleep parameters, in stroke patients. Although these changes are modest, our findings suggest that TNI is a viable treatment alternative to CPAP in patients with SDB in the acute phase of ischemic stroke.
Resumo:
BACKGROUND AND PURPOSE: Sleep disordered breathing (SDB) is frequent in acute stroke patients and is associated with early neurologic worsening and poor outcome. Although continuous positive airway pressure (CPAP) effectively treats SDB, compliance is low. The objective of the present study was to assess the tolerance and the efficacy of a continuous high-flow-rate air administered through an open nasal cannula (transnasal insufflation, TNI), a less-intrusive method, to treat SDB in acute stroke patients. METHODS: Ten patients (age, 56.8 ± 10.7 years), with SDB ranging from moderate to severe (apnea-hypopnea index, AHI, >15/h of sleep) and on a standard sleep study at a mean of 4.8 ± 3.7 days after ischemic stroke (range, 1-15 days), were selected. The night after, they underwent a second sleep study while receiving TNI (18 L/min). RESULTS: TNI was well tolerated by all patients. For the entire group, TNI decreased the AHI from 40.4 ± 25.7 to 30.8 ± 25.7/h (p = 0.001) and the oxygen desaturation index >3% from 40.7 ± 28.4 to 31 ± 22.5/h (p = 0.02). All participants except one showed a decrease in AHI. The percentage of slow-wave sleep significantly increased with TNI from 16.7 ± 8.2% to 22.3 ± 7.4% (p = 0.01). There was also a trend toward a reduction in markers of sleep disruption (number of awakenings, arousal index). CONCLUSIONS: TNI improves SDB indices, and possibly sleep parameters, in stroke patients. Although these changes are modest, our findings suggest that TNI is a viable treatment alternative to CPAP in patients with SDB in the acute phase of ischemic stroke.
Resumo:
PURPOSE: A new magnetic resonance imaging approach for detection of myocardial late enhancement during free-breathing was developed. METHODS AND RESULTS: For suppression of respiratory motion artifacts, a prospective navigator technology including real-time motion correction and a local navigator restore was implemented. Subject specific inversion times were defined from images with incrementally increased inversion times acquired during a single dynamic scout navigator-gated and real-time motion corrected free-breathing scan. Subsequently, MR-imaging of myocardial late enhancement was performed with navigator-gated and real-time motion corrected adjacent short axis and long axis (two, three and four chamber) views. This alternative approach was investigated in 7 patients with history of myocardial infarction 12 min after i. v. administration of 0.2 mmol/kg body weight gadolinium-DTPA. CONCLUSION: With the presented navigator-gated and real-time motion corrected sequence for MR-imaging of myocardial late enhancement data can be completely acquired during free-breathing. Time constraints of a breath-hold technique are abolished and optimized patient specific inversion time is ensured.
Resumo:
PURPOSE: To evaluate gadocoletic acid (B-22956), a gadolinium-based paramagnetic blood pool agent, for contrast-enhanced coronary magnetic resonance angiography (MRA) in a Phase I clinical trial, and to compare the findings with those obtained using a standard noncontrast T2 preparation sequence. MATERIALS AND METHODS: The left coronary system was imaged in 12 healthy volunteers before B-22956 application and 5 (N = 11) and 45 (N = 7) minutes after application of 0.075 mmol/kg of body weight (BW) of B-22956. Additionally, imaging of the right coronary system was performed 23 minutes after B-22956 application (N = 6). A three-dimensional gradient echo sequence with T2 preparation (precontrast) or inversion recovery (IR) pulse (postcontrast) with real-time navigator correction was used. Assessment of the left and right coronary systems was performed qualitatively (a 4-point visual score for image quality) and quantitatively in terms of signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), vessel sharpness, visible vessel length, maximal luminal diameter, and the number of visible side branches. RESULTS: Significant (P < 0.01) increases in SNR (+42%) and CNR (+86%) were noted five minutes after B-22956 application, compared to precontrast T2 preparation values. A significant increase in CNR (+40%, P < 0.05) was also noted 45 minutes postcontrast. Vessels (left anterior descending artery (LAD), left coronary circumflex (LCx), and right coronary artery (RCA)) were also significantly (P < 0.05) sharper on postcontrast images. Significant increases in vessel length were noted for the LAD (P < 0.05) and LCx and RCA (both P < 0.01), while significantly more side branches were noted for the LAD and RCA (both P < 0.05) when compared to precontrast T2 preparation values. CONCLUSION: The use of the intravascular contrast agent B-22956 substantially improves both objective and subjective parameters of image quality on high-resolution three-dimensional coronary MRA. The increase in SNR, CNR, and vessel sharpness minimizes current limitations of coronary artery visualization with high-resolution coronary MRA.
Free-breathing whole-heart coronary MRA with 3D radial SSFP and self-navigated image reconstruction.
Resumo:
Respiratory motion is a major source of artifacts in cardiac magnetic resonance imaging (MRI). Free-breathing techniques with pencil-beam navigators efficiently suppress respiratory motion and minimize the need for patient cooperation. However, the correlation between the measured navigator position and the actual position of the heart may be adversely affected by hysteretic effects, navigator position, and temporal delays between the navigators and the image acquisition. In addition, irregular breathing patterns during navigator-gated scanning may result in low scan efficiency and prolonged scan time. The purpose of this study was to develop and implement a self-navigated, free-breathing, whole-heart 3D coronary MRI technique that would overcome these shortcomings and improve the ease-of-use of coronary MRI. A signal synchronous with respiration was extracted directly from the echoes acquired for imaging, and the motion information was used for retrospective, rigid-body, through-plane motion correction. The images obtained from the self-navigated reconstruction were compared with the results from conventional, prospective, pencil-beam navigator tracking. Image quality was improved in phantom studies using self-navigation, while equivalent results were obtained with both techniques in preliminary in vivo studies.
Resumo:
(Résumé de l'ouvrage) L'histoire des religions autant dans ses procédés que dans ses concepts est fondée sur la comparaison. Tels le mythe, le sacrifice, l'initiation ou la purification, ces concepts comparatifs ont fini par être neutralisés dans une ontologie à prétention universelle. Des religions on en est revenu à la religion, pour le plus grand profit des théologiens chrétiens, protestants et catholiques, qui y ont trouvé une nouvelle légitimité académique. Raison supplémentaire pour revenir sur les démarches comparatives et pour en critiquer les effets totalisants : la comparaison s'impose comme méthode à condition d'être contrastive et différentielle. Elle induit un regard relativisant et décentré ; ce regard oblique d'une part rend justice aux spécificités des manifestations et pratiques religieuses décrites dans leur diversité ; d'autre part il est la condition même, en sciences humaines en général, d'une position critique, antidote indispensable aux replis disciplinaires et institutionnels de nos contemporains. Les contributions réunies ici à la suite d'une journée d'échange passée à comparer les démarches comparatives en histoire des religions entraînent lectrices et lecteurs des rites du polythéisme grec aux pratiques contemporaines du yoga, en passant par différentes prétentions universalisantes du monothéisme chrétien, par les pratiques de l'hospitalité en régime rabbinique et en hindouisme brahmanique, mais aussi par la question du salut individuel en philosophie néoplatonicien, ne ou en théologie augustinienne, par les gestes de la prière dans les religions amérindiennes et dans la mystique chrétienne ou par les prophétismes chrétien et musulman ; ceci par le biais de méthodes comparatives se fondant sur une démarche historique, structurale, discursive ou cognitive.
Resumo:
rejection can lead to loss of function. Histological reading of endomyocardial biopsy remains the "gold standard" for guiding immunosuppression, despite its methodological limitations (sampling error and interobserver variability). The measurement of the T2 relaxation time has been suggested for detection of allograft rejection, on the pathophysiological basis that the T2 relaxation time prolongs with local edema resulting from acute allograft rejection. Using breath-held cardiac magnetic resonance T2 mapping at 1.5 T, Usman et al. (CircCardiovascImaging2012) detected moderate allograft rejection (grade 2R, ISHLT 2004). With modern immunosuppression grade 2R rejection has become a rare event, but the need remains for a technique that permits the discrimination of absent (grade 0R) and mild rejection (grade 1R). We therefore investigated whether an increase of magnetic field strength to 3T and the use of real-time navigator-gated respiration compensation allow for an increase in the sensitivity of T2 relaxation time detection that is necessary to achieve this discrimination. Methods: Eighteen patients received EMB (Tan et al., ArchPatholLabMed2007) and cardiac T2 mapping on the same day. Reading of T2 maps was blinded to the histological results. For final analysis, 3 cases with known 2R rejection at the time of T2 mapping were added, yielding 21 T2 mapping sessions. A respiration-navigator-gated radial gradient-recalled-echo pulse sequence (resolution 1.17 mm2, matrix 2562, trigger time 3 heartbeats, T2 preparation duration TET2 Prep = 60/30/0 ms) was applied to obtain 3 short-axis T2 maps (van Heeswijk et al., JACCCardiovascImaging2012), which were segmented according to AHA guidelines (Cerqueira et al, Circulation2001). The highest segmental T2 values were grouped according to histological rejection grade and differences were analyzed by Student's t-test, except for the non-blinded cases with 2R rejection. The degree of discrimination was determined using the Spearman's ranked correlation test. Results: The high-quality T2 maps allowed for visual differentiation of the rejection degrees (Figure 1), and the correlation of T2 mapping with the histological grade of acute cellular rejection was significant (Spearman's r = 0.56, p = 0.007). The 0R (n = 15) and 1R (n = 3) degrees demonstrated significantly different T2 values (46.9 ± 5.0 and 54.3 ± 3.0 ms, p = 0.02, Figure 2). Cases with 2R rejection showed clear T2 elevation (T2 = 60.3 ± 16.2 ms). Conclusions: This pilot study demonstrates that non-invasive free-breathing cardiac T2 mapping at 3T discriminates between no and mild cardiac allograft rejection. Confirmation of these encouraging results in a larger cohort should consider a study able to show equivalency or superiority of T2 mapping.
Resumo:
Hypoxia increases the ventilatory response to exercise, which leads to hyperventilation-induced hypocapnia and subsequent reduction in cerebral blood flow (CBF). We studied the effects of adding CO2 to a hypoxic inspired gas on CBF during heavy exercise in an altitude naïve population. We hypothesized that augmented inspired CO2 and hypoxia would exert synergistic effects on increasing CBF during exercise, which would improve exercise capacity compared to hypocapnic hypoxia. We also examined the responsiveness of CO2 and O2 chemoreception on the regulation ventilation (E) during incremental exercise. We measured middle cerebral artery velocity (MCAv; index of CBF), E, end-tidal PCO2, respiratory compensation threshold (RC) and ventilatory response to exercise (E slope) in ten healthy men during incremental cycling to exhaustion in normoxia and hypoxia (FIO2 = 0.10) with and without augmenting the fraction of inspired CO2 (FICO2). During exercise in normoxia, augmenting FICO2 elevated MCAv throughout exercise and lowered both RC onset andE slope below RC (P<0.05). In hypoxia, MCAv and E slope below RC during exercise were elevated, while the onset of RC occurred at lower exercise intensity (P<0.05). Augmenting FICO2 in hypoxia increased E at RC (P<0.05) but no difference was observed in RC onset, MCAv, or E slope below RC (P>0.05). The E slope above RC was unchanged with either hypoxia or augmented FICO2 (P>0.05). We found augmenting FICO2 increased CBF during sub-maximal exercise in normoxia, but not in hypoxia, indicating that the 'normal' cerebrovascular response to hypercapnia is blunted during exercise in hypoxia, possibly due to an exhaustion of cerebral vasodilatory reserve. This finding may explain the lack of improvement of exercise capacity in hypoxia with augmented CO2. Our data further indicate that, during exercise below RC, chemoreception is responsive, while above RC the ventilatory response to CO2 is blunted.
Resumo:
Breathing-induced bulk motion of the myocardium during data acquisition may cause severe image artifacts in coronary magnetic resonance angiography (MRA). Current motion compensation strategies include breath-holding or free-breathing MR navigator gating and tracking techniques. Navigator-based techniques have been further refined by the applications of sophisticated 2D k-space reordering techniques. A further improvement in image quality and a reduction of relative scanning duration may be expected from a 3D k-space reordering scheme. Therefore, a 3D k-space reordered acquisition scheme including a 3D navigator gated and corrected segmented k-space gradient echo imaging sequence for coronary MRA was implemented. This new zonal motion-adapted acquisition and reordering technique (ZMART) was developed on the basis of a numerical simulation of the Bloch equations. The technique was implemented on a commercial 1.5T MR system, and first phantom and in vivo experiments were performed. Consistent with the results of the theoretical findings, the results obtained in the phantom studies demonstrate a significant reduction of motion artifacts when compared to conventional (non-k-space reordered) gating techniques. Preliminary in vivo findings also compare favorably with the phantom experiments and theoretical considerations. Magn Reson Med 45:645-652, 2001.
Resumo:
PURPOSE: To combine weighted iterative reconstruction with self-navigated free-breathing coronary magnetic resonance angiography for retrospective reduction of respiratory motion artifacts. METHODS: One-dimensional self-navigation was improved for robust respiratory motion detection and the consistency of the acquired data was estimated on the detected motion. Based on the data consistency, the data fidelity term of iterative reconstruction was weighted to reduce the effects of respiratory motion. In vivo experiments were performed in 14 healthy volunteers and the resulting image quality of the proposed method was compared to a navigator-gated reference in terms of acquisition time, vessel length, and sharpness. RESULT: Although the sampling pattern of the proposed method contained 60% more samples with respect to the reference, the scan efficiency was improved from 39.5 ± 10.1% to 55.1 ± 9.1%. The improved self-navigation showed a high correlation to the standard navigator signal and the described weighting efficiently reduced respiratory motion artifacts. Overall, the average image quality of the proposed method was comparable to the navigator-gated reference. CONCLUSION: Self-navigated coronary magnetic resonance angiography was successfully combined with weighted iterative reconstruction to reduce the total acquisition time and efficiently suppress respiratory motion artifacts. The simplicity of the experimental setup and the promising image quality are encouraging toward future clinical evaluation. Magn Reson Med 73:1885-1895, 2015. © 2014 Wiley Periodicals, Inc.