71 resultados para Borrowing constraint
Resumo:
Phenotypic plasticity allows organisms to produce alternative phenotypes under different conditions and represents one of the most important ways by which organisms adaptively respond to the environment. However, the relationship between phenotypic plasticity and molecular evolution remains poorly understood. We addressed this issue by investigating the evolution of genes associated with phenotypically plastic castes, sexes, and developmental stages of the fire ant Solenopsis invicta. We first determined if genes associated with phenotypic plasticity in S. invicta evolved at a rapid rate, as predicted under theoretical models. We found that genes differentially expressed between S. invicta castes, sexes, and developmental stages all exhibited elevated rates of evolution compared with ubiquitously expressed genes. We next investigated the evolutionary history of genes associated with the production of castes. Surprisingly, we found that orthologs of caste-biased genes in S. invicta and the social bee Apis mellifera evolved rapidly in lineages without castes. Thus, in contrast to some theoretical predictions, our results suggest that rapid rates of molecular evolution may not arise primarily as a consequence of phenotypic plasticity. Instead, genes evolving under relaxed purifying selection may more readily adopt new forms of biased expression during the evolution of alternate phenotypes. These results suggest that relaxed selective constraint on protein-coding genes is an important and underappreciated element in the evolutionary origin of phenotypic plasticity.
Resumo:
Needle fibre calcite is one of the most ubiquitous habits of calcite in vadose environments (caves deposits, soil pores, etc.). Its origin, either through inorganic, indirect or direct biological processes, has long been debated. In this study, investigations at 11 sites in Europe, Africa and Central America support arguments for its biogenic origin. The wide range of needle morphologies is the result of a gradual evolution of the simplest type, a rod. This rod is the elementary brick which, by aggregation and welding, builds more complex needles. The absence of cross-welded needles implies that they are welded in a mould, or under a longitudinal and unidirectional constraint, before being released inside the soil pores. The difference between the lengthening of the needles and the c axis can be explained by the existence of needles observed under a scanning electron microscope in organic sleeves, which can act as a mould during rod growth. Complex morphologies with epitaxial outgrowths on straight rods cannot have grown entirely inside organic microtubes; they must result from soil diagenesis after the release of straight rods in a soil-free medium. Whisker crystals are interpreted as the result of growth and coalescence of euhedral crystals on a rod. Rhomb chains are considered to be the consequence of successive epitaxial growth steps on a needle during variations in growth conditions. Isotopic signatures for needle fibre calcite vary from -16.63[per mille] to +1.10[per mille] and from -8.63[per mille] to -2.25[per mille] for Delta13C and Delta18O, respectively. The absence of high Delta18O values for needle fibre calcite precludes a purely physicochemical origin (evaporative) for this particular habit of calcite. As epitaxial growth cannot precipitate in the same conditions as initial needles, needle fibre calcite stable isotopic signatures should be used with caution as a proxy for palaeoenvironmental reconstructions. In addition, it is suggested that the term needle fibre calcite should be kept for the original biogenic form. The other habit should be referred to as epitaxial forms of needle fibre calcite.
Resumo:
Until recently, microbial identification in clinical diagnostic laboratories has mainly relied on conventional phenotypic and gene sequencing identification techniques. The development of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) devices has revolutionized the routine identification of microorganisms in clinical microbiology laboratories by introducing an easy, rapid, high throughput, low-cost, and efficient identification technique. This technology has been adapted to the constraint of clinical diagnostic laboratories and has the potential to replace and/or complement conventional identification techniques for both bacterial and fungal strains. Using standardized procedures, the resolution of MALDI-TOF MS allows accurate identification at the species level of most Gram-positive and Gram-negative bacterial strains with the exception of a few difficult strains that require more attention and further development of the method. Similarly, the routine identification by MALDI-TOF MS of yeast isolates is reliable and much quicker than conventional techniques. Recent studies have shown that MALDI-TOF MS has also the potential to accurately identify filamentous fungi and dermatophytes, providing that specific standardized procedures are established for these microorganisms. Moreover, MALDI-TOF MS has been used successfully for microbial typing and identification at the subspecies level, demonstrating that this technology is a potential efficient tool for epidemiological studies and for taxonomical classification.
Resumo:
In plants, an oligogene family encodes NADP-malic enzymes (NADP-me), which are responsible for various functions and exhibit different kinetics and expression patterns. In particular, a chloroplast isoform of NADP-me plays a key role in one of the three biochemical subtypes of C4 photosynthesis, an adaptation to warm environments that evolved several times independently during angiosperm diversification. By combining genomic and phylogenetic approaches, this study aimed at identifying the molecular mechanisms linked to the recurrent evolutions of C4-specific NADP-me in grasses (Poaceae). Genes encoding NADP-me (nadpme) were retrieved from genomes of model grasses and isolated from a large sample of C3 and C4 grasses. Genomic and phylogenetic analyses showed that 1) the grass nadpme gene family is composed of four main lineages, one of which is expressed in plastids (nadpme-IV), 2) C4-specific NADP-me evolved at least five times independently from nadpme-IV, and 3) some codons driven by positive selection underwent parallel changes during the multiple C4 origins. The C4 NADP-me being expressed in chloroplasts probably constrained its recurrent evolutions from the only plastid nadpme lineage and this common starting point limited the number of evolutionary paths toward a C4 optimized enzyme, resulting in genetic convergence. In light of the history of nadpme genes, an evolutionary scenario of the C4 phenotype using NADP-me is discussed.
Resumo:
We propose a compressive sensing algorithm that exploits geometric properties of images to recover images of high quality from few measurements. The image reconstruction is done by iterating the two following steps: 1) estimation of normal vectors of the image level curves, and 2) reconstruction of an image fitting the normal vectors, the compressed sensing measurements, and the sparsity constraint. The proposed technique can naturally extend to nonlocal operators and graphs to exploit the repetitive nature of textured images to recover fine detail structures. In both cases, the problem is reduced to a series of convex minimization problems that can be efficiently solved with a combination of variable splitting and augmented Lagrangian methods, leading to fast and easy-to-code algorithms. Extended experiments show a clear improvement over related state-of-the-art algorithms in the quality of the reconstructed images and the robustness of the proposed method to noise, different kind of images, and reduced measurements.
Resumo:
Quantitative trait loci analysis of natural Arabidopsis thaliana accessions is increasingly exploited for gene isolation. However, to date this has mostly revealed deleterious mutations. Among them, a loss-of-function allele identified the root growth regulator BREVIS RADIX (BRX). Here we present evidence that BRX and the paralogous BRX-LIKE (BRXL) genes are under selective constraint in monocotyledons as well as dicotyledons. Unexpectedly, however, whereas none of the Arabidopsis orthologs except AtBRXL1 could complement brx null mutants when expressed constitutively, nearly all monocotyledon BRXLs tested could. Thus, BRXL proteins seem to be more diversified in dicotyledons than in monocotyledons. This functional diversification was correlated with accelerated rates of sequence divergence in the N-terminal regions. Population genetic analyses of 30 haplotypes are suggestive of an adaptive role of AtBRX and AtBRXL1. In two accessions, Lc-0 and Lov-5, seven amino acids are deleted in the variable region between the highly conserved C-terminal, so-called BRX domains. Genotyping of 42 additional accessions also found this deletion in Kz-1, Pu2-7, and Ws-0. In segregating recombinant inbred lines, the Lc-0 allele (AtBRX(Lc-0)) conferred significantly enhanced root growth. Moreover, when constitutively expressed in the same regulatory context, AtBRX(Lc-0) complemented brx mutants more efficiently than an allele without deletion. The same was observed for AtBRXL1, which compared with AtBRX carries a 13 amino acid deletion that encompasses the deletion found in AtBRX(Lc-0). Thus, the AtBRX(Lc-0) allele seems to contribute to natural variation in root growth vigor and provides a rare example of an experimentally confirmed, hyperactive allelic variant.
Resumo:
Congenital hemiparesis is one of the most frequent pediatric motor disorders. Upper limb rehabilitation of the hemiparetic child has considerably evolved during the last decade by the use of focal chemical denervation (intramuscular botulinum toxin) and the introduction of novel rehabilitation techniques such as constraint induced movement therapy or robotic reeducation.
Resumo:
Recent multisensory research has emphasized the occurrence of early, low-level interactions in humans. As such, it is proving increasingly necessary to also consider the kinds of information likely extracted from the unisensory signals that are available at the time and location of these interaction effects. This review addresses current evidence regarding how the spatio-temporal brain dynamics of auditory information processing likely curtails the information content of multisensory interactions observable in humans at a given latency and within a given brain region. First, we consider the time course of signal propagation as a limitation on when auditory information (of any kind) can impact the responsiveness of a given brain region. Next, we overview the dual pathway model for the treatment of auditory spatial and object information ranging from rudimentary to complex environmental stimuli. These dual pathways are considered an intrinsic feature of auditory information processing, which are not only partially distinct in their associated brain networks, but also (and perhaps more importantly) manifest only after several tens of milliseconds of cortical signal processing. This architecture of auditory functioning would thus pose a constraint on when and in which brain regions specific spatial and object information are available for multisensory interactions. We then separately consider evidence regarding mechanisms and dynamics of spatial and object processing with a particular emphasis on when discriminations along either dimension are likely performed by specific brain regions. We conclude by discussing open issues and directions for future research.
Resumo:
Simulated-annealing-based conditional simulations provide a flexible means of quantitatively integrating diverse types of subsurface data. Although such techniques are being increasingly used in hydrocarbon reservoir characterization studies, their potential in environmental, engineering and hydrological investigations is still largely unexploited. Here, we introduce a novel simulated annealing (SA) algorithm geared towards the integration of high-resolution geophysical and hydrological data which, compared to more conventional approaches, provides significant advancements in the way that large-scale structural information in the geophysical data is accounted for. Model perturbations in the annealing procedure are made by drawing from a probability distribution for the target parameter conditioned to the geophysical data. This is the only place where geophysical information is utilized in our algorithm, which is in marked contrast to other approaches where model perturbations are made through the swapping of values in the simulation grid and agreement with soft data is enforced through a correlation coefficient constraint. Another major feature of our algorithm is the way in which available geostatistical information is utilized. Instead of constraining realizations to match a parametric target covariance model over a wide range of spatial lags, we constrain the realizations only at smaller lags where the available geophysical data cannot provide enough information. Thus we allow the larger-scale subsurface features resolved by the geophysical data to have much more due control on the output realizations. Further, since the only component of the SA objective function required in our approach is a covariance constraint at small lags, our method has improved convergence and computational efficiency over more traditional methods. Here, we present the results of applying our algorithm to the integration of porosity log and tomographic crosshole georadar data to generate stochastic realizations of the local-scale porosity structure. Our procedure is first tested on a synthetic data set, and then applied to data collected at the Boise Hydrogeophysical Research Site.
Resumo:
Innate immunity reacts to conserved bacterial molecules. The outermost lipopolysaccharide (LPS) of Gram-negative organisms is highly inflammatory. It activates responsive cells via specific CD14 and toll-like receptor-4 (TLR4) surface receptor and co-receptors. Gram-positive bacteria do not contain LPS, but carry surface teichoic acids, lipoteichoic acids and peptidoglycan instead. Among these, the thick peptidoglycan is the most conserved. It also triggers cytokine release via CD14, but uses the TLR2 co-receptor instead of TLR4 used by LPS. Moreover, whole peptidoglycan is 1000-fold less active than LPS in a weight-to-weight ratio. This suggests either that it is not important for inflammation, or that only part of it is reactive while the rest acts as ballast. Biochemical dissection of Staphylococcus aureus and Streptococcus pneumoniae cell walls indicates that the second assumption is correct. Long, soluble peptidoglycan chains (approximately 125 kDa) are poorly active. Hydrolysing these chains to their minimal unit (2 sugars and a stem peptide) completely abrogates inflammation. Enzymatic dissection of the pneumococcal wall generated a mixture of highly active fragments, constituted of trimeric stem peptides, and poorly active fragments, constituted of simple monomers and dimers or highly polymerized structures. Hence, the optimal constraint for activation might be 3 cross-linked stem peptides. The importance of structural constraint was demonstrated in additional studies. For example, replacing the first L-alanine in the stem peptide with a D-alanine totally abrogated inflammation in experimental meningitis. Likewise, modifying the D-alanine decorations of lipoteichoic acids with L-alanine, or deacylating them from their diacylglycerol lipid anchor also decreased the inflammatory response. Thus, although considered as a broad-spectrum pattern-recognizing system, innate immunity can detect very subtle differences in Gram-positive walls. This high specificity underlines the importance of using well-characterized microbial material in investigating the system.
Resumo:
BACKGROUND: Over the years, somatic care has become increasingly specialized. Furthermore, a rising number of patients requiring somatic care also present with a psychiatric comorbidity. As a consequence, the time and resources needed to care for these patients can interfere with the course of somatic treatment and influence the patient-caregiver relationship. In the light of these observations, the Liaison Psychiatry Unit at the University Hospital in Lausanne (CHUV) has educated its nursing staff in order to strengthen its action within the general care hospital. What has been developed is a reflexive approach through supervision of somatic staff, in order to improve the efficiency of liaison psychiatry interventions with the caregivers in charge of patients. The kind of supervision we have developed is the result of a real partnership with somatic staff. Besides, in order to better understand the complexity of interactions between the two systems involved, the patient's and the caregivers', we use several theoretical references in an integrative manner. PSYCHOANALYTICAL REFERENCE: The psychoanalytical model allows us to better understand the dynamics between the supervisor and the supervised group in order to contain and give meaning to the affects arising in the supervision space. "Containing function" and "transitional phenomena" refer to the experience in which emotions can find a space where they can be taken in and processed in a secure and supportive manner. These concepts, along with that of the "psychic envelope", were initially developed to explain the psychological development of the baby in its early interactions with its mother or its surrogate. In the field of supervision, they allow us to be aware of these complex phenomena and the diverse qualities to which a supervisor needs to resort, such as attention, support and incentive, in order to offer a secure environment. SYSTEMIC REFERENCE: A new perspective of the patient's complexity is revealed by the group's dynamics. The supervisor's attention is mainly focused on the work of affects. However, these are often buried under a defensive shell, serving as a temporary protection, which prevents the caregiver from recognizing his or her own emotions, thereby enhancing the difficulties in the relationship with the patient. Whenever the work of putting emotions into words fail, we use "sculpting", a technique derived from the systemic model. Through the use of this type of analogical language, affects can emerge without constraint or feelings of danger. Through "playing" in that "transitional space", new exchanges appear between group members and allow new behaviors to be conceived. In practice, we ask the supervisee who is presenting a complex situation, to design a spatial representation of his or her understanding of the situation, through the display of characters significant to the situation: the patient, somatic staff members, relatives of the patient, etc. In silence, the supervisee shapes the characters into postures and arranges them in the room. Each sculpted character is identified, named, and positioned, with his or her gaze being set in a specific direction. Finally the sculptor shapes him or herself in his or her own role. When the sculpture is complete and after a few moments of fixation, we ask participants to express themselves about their experience. By means of this physical representation, participants to the sculpture discover perceptions and feelings that were unknown up to then. Hence from this analogical representation a reflection and hypotheses of understanding can arise and be developed within the group. CONCLUSION: Through the use of the concepts of "containing function" and "transitional space" we position ourselves in the scope of the encounter and the dialog. Through the use of the systemic technique of "sculpting" we promote the process of understanding, rather than that of explaining, which would place us in the position of experts. The experience of these encounters has shown us that what we need to focus on is indeed what happens in this transitional space in terms of dynamics and process. The encounter and the sharing of competencies both allow a new understanding of the situation at hand, which has, of course, to be verified in the reality of the patient-caregiver relationship. It is often a source of adjustment for interpersonal skills to recover its containing function in order to enable caregiver to better respond to the patient's needs.
Resumo:
MOTIVATION: The analysis of molecular coevolution provides information on the potential functional and structural implication of positions along DNA sequences, and several methods are available to identify coevolving positions using probabilistic or combinatorial approaches. The specific nucleotide or amino acid profile associated with the coevolution process is, however, not estimated, but only known profiles, such as the Watson-Crick constraint, are usually considered a priori in current measures of coevolution. RESULTS: Here, we propose a new probabilistic model, Coev, to identify coevolving positions and their associated profile in DNA sequences while incorporating the underlying phylogenetic relationships. The process of coevolution is modeled by a 16 × 16 instantaneous rate matrix that includes rates of transition as well as a profile of coevolution. We used simulated, empirical and illustrative data to evaluate our model and to compare it with a model of 'independent' evolution using Akaike Information Criterion. We showed that the Coev model is able to discriminate between coevolving and non-coevolving positions and provides better specificity and specificity than other available approaches. We further demonstrate that the identification of the profile of coevolution can shed new light on the process of dependent substitution during lineage evolution.
Resumo:
Energy demand is an important constraint on neural signaling. Several methods have been proposed to assess the energy budget of the brain based on a bottom-up approach in which the energy demand of individual biophysical processes are first estimated independently and then summed up to compute the brain's total energy budget. Here, we address this question using a novel approach that makes use of published datasets that reported average cerebral glucose and oxygen utilization in humans and rodents during different activation states. Our approach allows us (1) to decipher neuron-glia compartmentalization in energy metabolism and (2) to compute a precise state-dependent energy budget for the brain. Under the assumption that the fraction of energy used for signaling is proportional to the cycling of neurotransmitters, we find that in the activated state, most of the energy ( approximately 80%) is oxidatively produced and consumed by neurons to support neuron-to-neuron signaling. Glial cells, while only contributing for a small fraction to energy production ( approximately 6%), actually take up a significant fraction of glucose (50% or more) from the blood and provide neurons with glucose-derived energy substrates. Our results suggest that glycolysis occurs for a significant part in astrocytes whereas most of the oxygen is utilized in neurons. As a consequence, a transfer of glucose-derived metabolites from glial cells to neurons has to take place. Furthermore, we find that the amplitude of this transfer is correlated to (1) the activity level of the brain; the larger the activity, the more metabolites are shuttled from glia to neurons and (2) the oxidative activity in astrocytes; with higher glial pyruvate metabolism, less metabolites are shuttled from glia to neurons. While some of the details of a bottom-up biophysical approach have to be simplified, our method allows for a straightforward assessment of the brain's energy budget from macroscopic measurements with minimal underlying assumptions.
Resumo:
Aim We examined whether species occurrences are primarily limited by physiological tolerance in the abiotically more stressful end of climatic gradients (the asymmetric abiotic stress limitation (AASL) hypothesis) and the geographical predictions of this hypothesis: abiotic stress mainly determines upper-latitudinal and upper-altitudinal species range limits, and the importance of abiotic stress for these range limits increases the further northwards and upwards a species occurs. Location Europe and the Swiss Alps. Methods The AASL hypothesis predicts that species have skewed responses to climatic gradients, with a steep decline towards the more stressful conditions. Based on presence-absence data we examined the shape of plant species responses (measured as probability of occurrence) along three climatic gradients across latitudes in Europe (1577 species) and altitudes in the Swiss Alps (284 species) using Huisman-Olff-Fresco, generalized linear and generalized additive models. Results We found that almost half of the species from Europe and one-third from the Swiss Alps showed responses consistent with the predictions of the AASL hypothesis. Cold temperatures and a short growing season seemed to determine the upper-latitudinal and upper-altitudinal range limits of up to one-third of the species, while drought provided an important constraint at lower-latitudinal range limits for up to one-fifth of the species. We found a biome-dependent influence of abiotic stress and no clear support for abiotic stress as a stronger upper range-limit determinant for species with higher latitudinal and altitudinal distributions. However, the overall influence of climate as a range-limit determinant increased with latitude. Main conclusions Our results support the AASL hypothesis for almost half of the studied species, and suggest that temperature-related stress controls the upper-latitudinal and upper-altitudinal range limits of a large proportion of these species, while other factors including drought stress may be important at the lower range limits.
Resumo:
The bias of αβ T cells for MHC ligands has been proposed to be intrinsic to the T-cell receptor (TCR). Equally, the CD4 and CD8 coreceptors contribute to ligand restriction by colocalizing Lck with the TCR when MHC ligands are engaged. To determine the importance of intrinsic ligand bias, the germ-line TCR complementarity determining regions were extensively diversified in vivo. We show that engagement with MHC ligands during thymocyte selection and peripheral T-cell activation imposes remarkably little constraint over TCR structure. Such versatility is more consistent with an opportunist, rather than a predetermined, mode of interface formation. This hypothesis was experimentally confirmed by expressing a hybrid TCR containing TCR-γ chain germ-line complementarity determining regions, which engaged efficiently with MHC ligands.