87 resultados para Boolean Functions, Nonlinearity, Evolutionary Computation, Equivalence Classes
Resumo:
On the basis of serologic cross-reactivity, three immunoglobulin classes homologous to human IgG, IgM and IgA were identified in two species of acquatic mammal representing the orders Cetacea (dolphin) and Pinnipedea (sea lion). Molecular size was estimated by sucrose density gradient ultracentrifugation and Sephadex G-200 chromatography, indicating a 7S IgG, 19S IgM and heterogeneous serum IgA. Human secretory component was readily bound to the IgM of both species and to an apparently lesser extent to the larger molecular size populations of IgA. No binding was observed with IgG. Several antisera specific for human γ-chains gave a single precipitin line with the sea lion IgG but when made to react with dolphin serum produced two lines, suggesting the presence of two different subclasses of IgG in this species.
Resumo:
As the evolutionary significance of hybridization is largely dictated by its extent beyond the first generation, we broadly surveyed patterns of introgression across a sympatric zone of two native poplars (Populus balsamifera, Populus deltoides) in Quebec, Canada within which European exotic Populus nigra and its hybrids have been extensively planted since the 1800s. Single nucleotide polymorphisms (SNPs) that appeared fixed within each species were characterized by DNA-sequencing pools of pure individuals. Thirty-five of these diagnostic SNPs were employed in a high-throughput assay that genotyped 635 trees of different age classes, sampled from 15 sites with various degrees of anthropogenic disturbance. The degree of admixture within sampled trees was then assessed through Bayesian clustering of genotypes. Hybrids were present in seven of the populations, with 2.4% of all sampled trees showing spontaneous admixture. Sites with hybrids were significantly more disturbed than pure stands, while hybrids comprised both immature juveniles and trees of reproductive age. All three possible F1s were detected. Advanced-generation hybrids were consistently biased towards P. balsamifera regardless of whether hybridization had occurred with P. deltoides or P. nigra. Gene exchange between P. deltoides and P. nigra was not detected beyond the F1 generation; however, detection of a trihybrid demonstrates that even this apparent reproductive isolation does not necessarily result in an evolutionary dead end. Collectively, results demonstrate the natural fertility of hybrid poplars and suggest that introduced genes could potentially affect the genetic integrity of native trees, similar to that arising from introgression between natives.
Resumo:
Depuis les années 1980, la sociologie a connu une résurgence des thèses du déclin des classes sociales qui a provoqué d'importants débats. En matière d'évolution de la structure de classe plus particulièrement, le débat se focalise sur les thèses dites de la « moyennisation » de la société et de l'« aspiration vers le haut ». Dans ce cadre, la société (postindustrielle) serait désormais constituée d'une vaste classe moyenne tendant à provoquer une dissolution générale des frontières de classes. Cet article est une contribution empirique à ce débat et porte, plus précisément, sur l'évolution de la société suisse contemporaine. A priori, le cas suisse peut sembler favorable aux thèses du déclin des classes sociales. En effet, en comparaison européenne, la Suisse connaît un secteur des services supérieur à la moyenne, un chômage inférieur à celle-ci ou encore un niveau de rémunération supérieur à la moyenne ; tous phénomènes souvent mis en avant pour expliquer le déclin affirmé des classes sociales. Afin d'évaluer les thèses sous revue, une série d'hypothèses ont été formulées au sujet de l'évolution de la division du travail (mesurée selon la classification internationale des professions) d'une part, de la structure de classe (approchée par les catégories socioprofessionnelles helvétiques) d'autre part. L'analyse se base sur des données secondaires, ce qui implique une dépendance vis-à-vis des pratiques des institutions « productrices ». Malgré ces limitations méthodologiques, l'analyse montre que - au moins prises comme un tout cohérent - les thèses du déclin des classes sociales sont réfutées dans le cas, pourtant favorable en principe, de la société suisse contemporaine. Ainsi, entre autres, cette dernière s'avère n'être pas plus une société de classes moyennes que de classes populaires ; ce qui la rapproche d'ailleurs de nombreuses sociétés européennes.
Resumo:
Notch proteins are important in binary cell-fate decisions and inhibiting differentiation in many developmental systems, and aberrant Notch signaling is associated with tumorigenesis. The role of Notch signaling in mammalian skin is less well characterized and is mainly based on in vitro studies, which suggest that Notch signaling induces differentiation in mammalian skin. Conventional gene targeting is not applicable to establishing the role of Notch receptors or ligands in the skin because Notch1-/- embryos die during gestation. Therefore, we used a tissue-specific inducible gene-targeting approach to study the physiological role of the Notch1 receptor in the mouse epidermis and the corneal epithelium of adult mice. Unexpectedly, ablation of Notch1 results in epidermal and corneal hyperplasia followed by the development of skin tumors and facilitated chemical-induced skin carcinogenesis. Notch1 deficiency in skin and in primary keratinocytes results in increased and sustained expression of Gli2, causing the development of basal-cell carcinoma-like tumors. Furthermore, Notch1 inactivation in the epidermis results in derepressed beta-catenin signaling in cells that should normally undergo differentiation. Enhanced beta-catenin signaling can be reversed by re-introduction of a dominant active form of the Notch1 receptor. This leads to a reduction in the signaling-competent pool of beta-catenin, indicating that Notch1 can inhibit beta-catenin-mediated signaling. Our results indicate that Notch1 functions as a tumor-suppressor gene in mammalian skin.
Resumo:
The dynamical analysis of large biological regulatory networks requires the development of scalable methods for mathematical modeling. Following the approach initially introduced by Thomas, we formalize the interactions between the components of a network in terms of discrete variables, functions, and parameters. Model simulations result in directed graphs, called state transition graphs. We are particularly interested in reachability properties and asymptotic behaviors, which correspond to terminal strongly connected components (or "attractors") in the state transition graph. A well-known problem is the exponential increase of the size of state transition graphs with the number of network components, in particular when using the biologically realistic asynchronous updating assumption. To address this problem, we have developed several complementary methods enabling the analysis of the behavior of large and complex logical models: (i) the definition of transition priority classes to simplify the dynamics; (ii) a model reduction method preserving essential dynamical properties, (iii) a novel algorithm to compact state transition graphs and directly generate compressed representations, emphasizing relevant transient and asymptotic dynamical properties. The power of an approach combining these different methods is demonstrated by applying them to a recent multilevel logical model for the network controlling CD4+ T helper cell response to antigen presentation and to a dozen cytokines. This model accounts for the differentiation of canonical Th1 and Th2 lymphocytes, as well as of inflammatory Th17 and regulatory T cells, along with many hybrid subtypes. All these methods have been implemented into the software GINsim, which enables the definition, the analysis, and the simulation of logical regulatory graphs.
Resumo:
Peroxisome proliferator-activated receptors, PPARs, (NR1C) are nuclear hormone receptors implicated in energy homeostasis. Upon activation, these ligand-inducible transcription factors stimulate gene expression by binding to the promoter of target genes. The different structural domains of PPARs are presented in terms of activation mechanisms, namely ligand binding, phosphorylation, and cofactor interaction. The specificity of ligands, such as fatty acids, eicosanoids, fibrates and thiazolidinediones (TZD), is described for each of the three PPAR isotypes, alpha (NR1C1), beta (NR1C2) and gamma (NR1C3), so as the differential tissue distribution of these isotypes. Finally, general and specific functions of the PPAR isotypes are discussed, namely their implication in the control of inflammatory responses, cell proliferation and differentiation, the roles of PPARalpha in fatty acid catabolism and of PPARgamma in adipogenesis.
Resumo:
Species delimitation has been invigorated as a discipline in systematics by an influx of new character sets, analytical methods, and conceptual advances. We use genetic data from 68 markers, combined with distributional, bioclimatic, and coloration information, to hypothesize boundaries of evolutionarily independent lineages (species) within the widespread and highly variable nominal fire ant species Solenopsis saevissima, a member of a species group containing invasive pests as well as species that are models for ecological and evolutionary research. Our integrated approach uses diverse methods of analysis to sequentially test whether populations meet specific operational criteria (contingent properties) for candidacy as morphologically cryptic species, including genetic clustering, monophyly, reproductive isolation, and occupation of distinctive niche space. We hypothesize that nominal S. saevissima comprises at least 4-6 previously unrecognized species, including several pairs whose parapatric distributions implicate the development of intrinsic premating or postmating barriers to gene flow. Our genetic data further suggest that regional genetic differentiation in S. saevissima has been influenced by hybridization with other nominal species occurring in sympatry or parapatry, including the quite distantly related Solenopsis geminata. The results of this study illustrate the importance of employing different classes of genetic data (coding and noncoding regions and nuclear and mitochondrial DNA [mtDNA] markers), different methods of genetic data analysis (tree-based and non-tree based methods), and different sources of data (genetic, morphological, and ecological data) to explicitly test various operational criteria for species boundaries in clades of recently diverged lineages, while warning against over reliance on any single data type (e.g., mtDNA sequence variation) when drawing inferences.
Resumo:
It has been reported in the literature that executive functions may be fractioned into updating, shifting, and inhibition. The present study aimed to explore whether these executive sub-components can be identified in a more age-heterogeneous sample and see if they are prone to an age-related decline. We tested the performances of 81 individuals aged from 18 to 88 years old in each executive sub-component, working memory, fluid intelligence and processing speed. Correlation analysis revealed only a slight positive relationship between the two updating measures. A linear decrement with age was observed only for two complex executive tests. Tasks indexing working memory, processing speed and fluid intelligence showed a stronger linear decline with age than executive tasks. In conclusion, our results did not replicate the executive structure known from the literature, and revealed that decrement in executive function is not an unavoidable concomitant of aging but rather concerns specific executive tasks.
Resumo:
A growing number of studies have been addressing the relationship between theory of mind (TOM) and executive functions (EF) in patients with acquired neurological pathology. In order to provide a global overview on the main findings, we conducted a systematic review on group studies where we aimed to (1) evaluate the patterns of impaired and preserved abilities of both TOM and EF in groups of patients with acquired neurological pathology and (2) investigate the existence of particular relations between different EF domains and TOM tasks. The search was conducted in Pubmed/Medline. A total of 24 articles met the inclusion criteria. We considered for analysis classical clinically accepted TOM tasks (first- and second-order false belief stories, the Faux Pas test, Happe's stories, the Mind in the Eyes task, and Cartoon's tasks) and EF domains (updating, shifting, inhibition, and access). The review suggests that (1) EF and TOM appear tightly associated. However, the few dissociations observed suggest they cannot be reduced to a single function; (2) no executive subprocess could be specifically associated with TOM performances; (3) the first-order false belief task and the Happe's story task seem to be less sensitive to neurological pathologies and less associated to EF. Even though the analysis of the reviewed studies demonstrates a close relationship between TOM and EF in patients with acquired neurological pathology, the nature of this relationship must be further investigated. Studies investigating ecological consequences of TOM and EF deficits, and intervention researches may bring further contributions to this question.
Resumo:
The evolution of a quantitative phenotype is often envisioned as a trait substitution sequence where mutant alleles repeatedly replace resident ones. In infinite populations, the invasion fitness of a mutant in this two-allele representation of the evolutionary process is used to characterize features about long-term phenotypic evolution, such as singular points, convergence stability (established from first-order effects of selection), branching points, and evolutionary stability (established from second-order effects of selection). Here, we try to characterize long-term phenotypic evolution in finite populations from this two-allele representation of the evolutionary process. We construct a stochastic model describing evolutionary dynamics at non-rare mutant allele frequency. We then derive stability conditions based on stationary average mutant frequencies in the presence of vanishing mutation rates. We find that the second-order stability condition obtained from second-order effects of selection is identical to convergence stability. Thus, in two-allele systems in finite populations, convergence stability is enough to characterize long-term evolution under the trait substitution sequence assumption. We perform individual-based simulations to confirm our analytic results.
Resumo:
One of the mediators of pleiotropic drug resistance in Saccharomyces cerevisiae is the ABC-transporter gene PDR5. This gene is regulated by at least two transcription factors with Zn(2)-Cys(6) finger DNA-binding motifs, Pdr1p and Pdr3p. In this work, we searched for functional homologues of these transcription factors in Candida albicans. A C. albicans gene library was screened in a S. cerevisiae mutant lacking PDR1 and PDR3 and clones resistant to azole antifungals were isolated. From these clones, three genes responsible for azole resistance were identified. These genes (CTA4, ASG1 and CTF1) encode proteins with Zn(2)-Cys(6)-type zinc finger motifs in their N-terminal domains. The C. albicans genes expressed in S. cerevisiae could activate the transcription of a PDR5-lacZ reporter system and this reporter activity was PDRE-dependent. They could also confer resistance to azoles in a S. cerevisiae strain lacking PDR1, PDR3 and PDR5, suggesting that CTA4-, ASG1- and CTF1-dependent azole resistance can be caused by genes other than PDR5 in S. cerevisiae. Deletion of CTA4, ASG1 and CTF1 in C. albicans had no effect on fluconazole susceptibility and did not alter the expression of the ABC-transporter genes CDR1 and CDR2 or the major facilitator gene MDR1, which encode multidrug transporters known as mediators of azole resistance in C. albicans. However, additional phenotypic screening tests on the C. albicans mutants revealed that the presence of ASG1 was necessary to sustain growth on non-fermentative carbon sources (sodium acetate, acetic acid, ethanol). In conclusion, C. albicans possesses functional homologues of the S. cerevisiae Pdr1p and Pdr3p transcription factors; however, their properties in C. albicans have been rewired to other functions.
Resumo:
Au Mali, les technologies de l'information et de la communication ont suscité un vif engouement. Portés par l'ancien Président Alpha Oumar Konaré, de nombreux projets gouvernementaux ont vu le jour. Parallèlement, les cybercafés se sont multipliés : moins de dix en 1997, ils étaient presque plus de 120 en 2006. Si les possibilités de se connecter à domicile et sur son lieu de travail se sont développées, les cybercafés restent des espaces idéaux pour découvrir les pratiques numériques. Une façon d'étudier les usages de l'Internet est de s'intéresser aux liens qui se nouent autour de l'ordinateur. La situation est complexe à Bamako, car les personnes qui accompagnent les clients des cybercafés sont nombreuses. L'analyse de cette nébuleuse relationnelle est l'occasion de procéder à un double détour. Géographique tout d'abord, dans la mesure où l'anthropologue est conduit à quitter le cybercafé pour se rendre dans l'espace social plus vaste appelé Cyber. Disciplinaire ensuite puisque son regard se déplace progressivement du média vers l'étude des règles qui régissent la parenté et les classes d'âge.
Resumo:
OBJECTIVE: To investigate the endocrine and renal effects of the dual inhibitor of angiotensin converting enzyme and neutral endopeptidase, MDL 100,240. DESIGN: A randomized, placebo-controlled, crossover study was performed in 12 healthy volunteers. METHODS: MDL 100,240 was administered intravenously over 20 min at single doses of 6.25 and 25 mg in subjects with a sodium intake of 280 (n = 6) or 80 (n = 6) mmol/day. Measurements were taken of supine and standing blood pressure, plasma angiotensin converting enzyme activity, angiotensin II, atrial natriuretic peptide, urinary atrial natriuretic peptide and cyclic GMP excretion, effective renal plasma flow and the glomerular filtration rate as p-aminohippurate and inulin clearances, electrolytes and segmental tubular function by endogenous lithium clearance. RESULTS: Supine systolic blood pressure was consistently decreased by MDL 100,240, particularly after the high dose and during the low-salt intake. Diastolic blood pressure and heart rate did not change. Plasma angiotensin converting enzyme activity decreased rapidly and dose-dependently. In both the high- and the low-salt treatment groups, plasma angiotensin II levels fell and renin activity rose accordingly, while plasma atrial natriuretic peptide levels remained unchanged. In contrast, urinary atrial natriuretic peptide excretion increased dose-dependently under both diets, as did urinary cyclic GMP excretion. Effective renal plasma flow and the glomerular filtration rate did not change. The urinary flow rate increased markedly during the first 2 h following administration of either dose of MDL 100,240 (P < 0.001) and, similarly, sodium excretion tended to increase from 0 to 4 h after the dose (P = 0.07). Potassium excretion remained stable. Proximal and distal fractional sodium reabsorption were not significantly altered by the treatment. Uric acid excretion was increased. The safety and clinical tolerance of MDL 100,240 were good. CONCLUSIONS: The increased fall in blood pressure in normal volunteers together with the preservation of renal hemodynamics and the increased urinary volume, atrial natriuretic peptide and cyclic GMP excretion distinguish MDL 100,240 as a double-enzyme inhibitor from inhibitors of the angiotensin converting enzyme alone. The differences appear to be due, at least in part, to increased renal exposure to atrial natriuretic peptide following neutral endopeptidase blockade.