146 resultados para Bone metabolic disease
Resumo:
Background: The metabolic syndrome (MS) represents a cluster of metabolic disorders that predicts diabetes and cardiovascular disease. Several definitions exist and further descriptive and prospective data are needed to compare these definitions and their significance in different populations. Objective: We examined, in a country of the African region, i) the prevalence of MS according to three major definitions (ATP, IDF, WHO); ii) the contribution of individual MS components; and iii) the agreement between the three considered definitions. We also examined the prevalence among diabetics and non-diabetics. Methods: We conducted an examination survey in a sample representative of the general population aged 25-64 of the Seychelles (Indian Ocean, African region), attended by 1255 persons (participation rate of 80.2%). Results: The prevalence of MS was similar with either definition of MS in men (24%-25%) but differed in women (WHO: 25%, ATP: 32%; IDF: 35%). Upon exclusion of diabetic persons, the prevalence was 5-10% lower for all three MS definitions: most diabetic persons had MS although a substantial proportion of diabetic men aged 45-64 did not have MS. The following components were found most often among persons with MS: 90% had high blood pressure (HBP) and 78% had obesity (ATP); 95% had obesity and 84% had HBP (WHO), and 89% had HBP and 75% had impaired glucose regulation (IDF) -not considering impaired glucose regulation and obesity that are compulsory components of the WHO and IDF definitions, respectively. Among persons with MS based on either of the three definitions (37% of total population), less than 80% met both ATP and IDF criteria, 67% both WHO and IDF criteria, 54% both WHO and ATP criteria and only 37% met all three definitions. Conclusions. We found a fairly high prevalence of MS in an African population. However, because there was only poor agreement between the 3 MS definitions, the fairly similar proportions of MS based on ATP, IDF or WHO definitions identified, to a substantial extent, different subjects as having MS.
Resumo:
Insulin resistance (IR) is a prevalent metabolic feature in chronic kidney disease (CKD). Postreceptor insulin-signaling defects have been observed in uremia. A decrease in the activity of phosphatidylinositol 3-kinase appears critical in the pathophysiology of CKD-associated IR. Lipotoxicity due to ectopic accumulation of lipid moieties has recently emerged as another mechanism by which CKD and/or associated metabolic disorders may lead to IR through impairment of various insulin-signaling molecules. Metabolic acidosis, anemia, excess of fat mass, inflammation, vitamin D deficiency, adipokine imbalance, physical inactivity, and the accumulation of nitrogenous compounds of uremia all contribute to CKD-associated IR. The clinical impacts of IR in this setting are numerous, including endothelial dysfunction, increased cardiovascular mortality, muscle wasting, and possibly initiation and progression of CKD. This is why IR may be a therapeutic target in the attempt to improve outcomes in CKD. General measures to improve IR are directed to counteract causal factors. The use of pharmaceutical agents such as inhibitors of the renin-angiotensin system may improve IR in hypertensive and CKD patients. Pioglitazone appears a safe and promising therapeutic agent to reduce IR and uremic-associated abnormalities. However, interventional studies are needed to test if the reduction and/or normalization of IR may actually improve outcomes in these patients.
Resumo:
BACKGROUND: High blood pressure, blood glucose, serum cholesterol, and BMI are risk factors for cardiovascular diseases and some of these factors also increase the risk of chronic kidney disease and diabetes. We estimated mortality from cardiovascular diseases, chronic kidney disease, and diabetes that was attributable to these four cardiometabolic risk factors for all countries and regions from 1980 to 2010. METHODS: We used data for exposure to risk factors by country, age group, and sex from pooled analyses of population-based health surveys. We obtained relative risks for the effects of risk factors on cause-specific mortality from meta-analyses of large prospective studies. We calculated the population attributable fractions for each risk factor alone, and for the combination of all risk factors, accounting for multicausality and for mediation of the effects of BMI by the other three risks. We calculated attributable deaths by multiplying the cause-specific population attributable fractions by the number of disease-specific deaths. We obtained cause-specific mortality from the Global Burden of Diseases, Injuries, and Risk Factors 2010 Study. We propagated the uncertainties of all the inputs to the final estimates. FINDINGS: In 2010, high blood pressure was the leading risk factor for deaths due to cardiovascular diseases, chronic kidney disease, and diabetes in every region, causing more than 40% of worldwide deaths from these diseases; high BMI and glucose were each responsible for about 15% of deaths, and high cholesterol for more than 10%. After accounting for multicausality, 63% (10·8 million deaths, 95% CI 10·1-11·5) of deaths from these diseases in 2010 were attributable to the combined effect of these four metabolic risk factors, compared with 67% (7·1 million deaths, 6·6-7·6) in 1980. The mortality burden of high BMI and glucose nearly doubled from 1980 to 2010. At the country level, age-standardised death rates from these diseases attributable to the combined effects of these four risk factors surpassed 925 deaths per 100 000 for men in Belarus, Kazakhstan, and Mongolia, but were less than 130 deaths per 100 000 for women and less than 200 for men in some high-income countries including Australia, Canada, France, Japan, the Netherlands, Singapore, South Korea, and Spain. INTERPRETATION: The salient features of the cardiometabolic disease and risk factor epidemic at the beginning of the 21st century are high blood pressure and an increasing effect of obesity and diabetes. The mortality burden of cardiometabolic risk factors has shifted from high-income to low-income and middle-income countries. Lowering cardiometabolic risks through dietary, behavioural, and pharmacological interventions should be a part of the global response to non-communicable diseases. FUNDING: UK Medical Research Council, US National Institutes of Health.
Resumo:
BACKGROUND: Cobalamin C methylmalonic aciduria with homocystinuria (cblC disease) is a rare hereditary inborn error of cobalamin metabolism, characterised by neurological, haematological and ophthalmological abnormalities. PATIENTS AND METHODS: Three consecutive patients with Cblc disease were examined. Investigations included slit lamp and fundus examination and full-field ERG. RESULTS: A maculopathy associated with both photopic and scotopic abnormal ERG was present in two cases and a salt and pepper retinopathy with abnormal photopic ERG was detected in the third patient. CONCLUSIONS: Despite early treatment and regular metabolic controls, all our patients exhibited both retinal and ERG abnormalities. There was no correlation between funduscopic appearance and the type of photoreceptor dysfunction. A literature review disclosed a retinopathy in 29 / 70 cases with cblC disease, with an abnormal ERG in 8 of the 12 tested cases, most with retinopathy. Retinal dysfunction in cblC disease may be more frequent than previously thought, and can involve cones only or both rods and cones. We recommend a formal ocular examination with full-field ERG in patients with Cblc disease.
Resumo:
Genome-wide association studies have identified 32 loci influencing body mass index, but this measure does not distinguish lean from fat mass. To identify adiposity loci, we meta-analyzed associations between ∼2.5 million SNPs and body fat percentage from 36,626 individuals and followed up the 14 most significant (P < 10(-6)) independent loci in 39,576 individuals. We confirmed a previously established adiposity locus in FTO (P = 3 × 10(-26)) and identified two new loci associated with body fat percentage, one near IRS1 (P = 4 × 10(-11)) and one near SPRY2 (P = 3 × 10(-8)). Both loci contain genes with potential links to adipocyte physiology. Notably, the body-fat-decreasing allele near IRS1 is associated with decreased IRS1 expression and with an impaired metabolic profile, including an increased visceral to subcutaneous fat ratio, insulin resistance, dyslipidemia, risk of diabetes and coronary artery disease and decreased adiponectin levels. Our findings provide new insights into adiposity and insulin resistance.
Resumo:
Bone substitute materials allowing trans-scaffold migration and in-scaffold survival of human bone-derived cells are mandatory for development of cell-engineered permanent implants to repair bone defects. In this study, we evaluated the influence on human bone-derived cells of the material composition and microstructure of foam scaffolds of calcium aluminate. The scaffolds were prepared using a direct foaming method allowing wide-range tailoring of the microstructure for pore size and pore openings. Human fetal osteoblasts (osteo-progenitors) attached to the scaffolds, migrated across the entire bioceramic depending on the scaffold pore size, colonized, and survived in the porous material for at least 6 weeks. The long-term biocompatibility of the scaffold material for human bone-derived cells was evidenced by in-scaffold determination of cell metabolic activity using a modified MTT assay, a repeated WST-1 assay, and scanning electron microscopy. Finally, we demonstrated that the osteo-progenitors can be covalently bound to the scaffolds using biocompatible click chemistry, thus enhancing the rapid adhesion of the cells to the scaffolds. Therefore, the different microstructures of the foams influenced the migratory potential of the cells, but not cell viability. Scaffolds allow covalent biocompatible chemical binding of the cells to the materials, either localized or widespread integration of the scaffolds for cell-engineered implants.
Resumo:
The reality of metabolic syndrome (MS) as a specific entity is debatable. However, the simple measure of waist circumference (>94 cm in men and >80 cm in women) is useful: (1) to check for insulin resistance by measuring serum levels of fasted glucose and insuline, cholesterol, triglycerides; (2) to look for diseases associated with MS such as hypertension, non alcohoolic steatohepatitis, sleep apnea, polycystic ovary disease, hypogonadism and to measure serum levels of ferritine, ALAT, ASAT, urate acid, CRP hs, testosterone and (3) to make obese people aware of their risk of becoming diabetic and to motivate them to change their life style. The utility of exercise and of various diets is discussed as well as the efficiency of drugs acting on different components of MS such as rimonabant, orlistat, metformin, glitazones, telmisartan and testosterone. The importance of political measures to fight the obesity epidemic is underlined.
Resumo:
The adipocyte-derived protein adiponectin is highly heritable and inversely associated with risk of type 2 diabetes mellitus (T2D) and coronary heart disease (CHD). We meta-analyzed 3 genome-wide association studies for circulating adiponectin levels (n = 8,531) and sought validation of the lead single nucleotide polymorphisms (SNPs) in 5 additional cohorts (n = 6,202). Five SNPs were genome-wide significant in their relationship with adiponectin (P< or =5x10(-8)). We then tested whether these 5 SNPs were associated with risk of T2D and CHD using a Bonferroni-corrected threshold of P< or =0.011 to declare statistical significance for these disease associations. SNPs at the adiponectin-encoding ADIPOQ locus demonstrated the strongest associations with adiponectin levels (P-combined = 9.2x10(-19) for lead SNP, rs266717, n = 14,733). A novel variant in the ARL15 (ADP-ribosylation factor-like 15) gene was associated with lower circulating levels of adiponectin (rs4311394-G, P-combined = 2.9x10(-8), n = 14,733). This same risk allele at ARL15 was also associated with a higher risk of CHD (odds ratio [OR] = 1.12, P = 8.5x10(-6), n = 22,421) more nominally, an increased risk of T2D (OR = 1.11, P = 3.2x10(-3), n = 10,128), and several metabolic traits. Expression studies in humans indicated that ARL15 is well-expressed in skeletal muscle. These findings identify a novel protein, ARL15, which influences circulating adiponectin levels and may impact upon CHD risk.
Resumo:
Protein energy wasting (PEW) is common in patients with chronic kidney disease (CKD) and is associated with adverse clinical outcomes, especially in individuals receiving maintenance dialysis therapy. A multitude of factors can affect the nutritional and metabolic status of CKD patients requiring a combination of therapeutic maneuvers to prevent or reverse protein and energy depletion. These include optimizing dietary nutrient intake, appropriate treatment of metabolic disturbances such as metabolic acidosis, systemic inflammation, and hormonal deficiencies, and prescribing optimized dialytic regimens. In patients where oral dietary intake from regular meals cannot maintain adequate nutritional status, nutritional supplementation, administered orally, enterally, or parenterally, is shown to be effective in replenishing protein and energy stores. In clinical practice, the advantages of oral nutritional supplements include proven efficacy, safety, and compliance. Anabolic strategies such as anabolic steroids, growth hormone, and exercise, in combination with nutritional supplementation or alone, have been shown to improve protein stores and represent potential additional approaches for the treatment of PEW. Appetite stimulants, anti-inflammatory interventions, and newer anabolic agents are emerging as novel therapies. While numerous epidemiological data suggest that an improvement in biomarkers of nutritional status is associated with improved survival, there are no large randomized clinical trials that have tested the effectiveness of nutritional interventions on mortality and morbidity.
Resumo:
Myocardial angiogenesis induction with vascular growth factors constitutes a potential strategy for patients whose coronary artery disease is refractory to conventional treatment. The importance of angiogenesis in bone formation has led to the development of growth factors derived from bovine bone protein. Twelve pigs (mean weight, 73 +/- 3 kg) were chosen for the study. In the first group (n = 6, growth factor group) five 100 micrograms boluses of growth factors derived from bovine bone protein, diluted in Povidone 5%, were injected in the lateral wall of the left ventricle. In the second group (n = 6, control group), the same operation was performed but only the diluting agent was injected. All the animals were sacrificed after 28 days and the vascular density of the left lateral wall (expressed as the number of vascular structures per mm2) as well as the area of blood vessel profiles per myocardial area analysed were determined histologically with a computerised system. The growth factor group had a capillary density which was significantly higher than that of the control group: 12.6 +/- 0.9/mm2 vs 4.8 +/- 0.5/mm2 (p < 0.01). The same holds true for the arteriolar density: 1 +/- 0.2/mm2 vs 0.3 +/- 0.1/mm2 (p < 0.01). The surface ratios of blood vessel profiles per myocardial area were 4900 +/- 800 micron 2/mm2 and 1550 +/- 400 micron 2/mm2 (p < 0.01) respectively. In this experimental model, bovine bone protein derived growth factors induce a significant neovascularisation in healthy myocardium, and appear therefore as promising candidates for therapeutic angiogenesis.
Resumo:
1. Summary The transcription factor and proto-oncogene c-myc plays an important role in integrating many mitogenic signals within the cell. The consequences are both broad and varied and include the regulation of apoptosis, cellular differentiation, cellular growth and cell cycle progression. It is found to be mis-regulated in over 70% of all cancers, however, our knowledge about c-Myc remains limited and very little is known about its physiological role in mammalian development and in adulthood. We have addressed the physiological role of c-Myc in both the bone marrow and the liver of mice by generating adult c-myc flox/flox mice that lacked c-myc in either the bone marrow or the liver after conversion of the c-myc flox alleles into null alleles by the inducible Mx¬Cre transgene with polyI-polyC. In investigating the role of c-Myc in the haematopoietic system, we concentrated on the aspects of cellular proliferation, cellular differentiation and apoptosis. Mice lacking c-Myc develop anaemia between 3-8 weeks and all more differentiated cell types are severely depleted leading to death. However in addition to its role in driving proliferation in transient amplifying cells, we unexpectedly discovered a new role for c-Myc in controlling haematopoietic stem cell (HSC) differentiation. c-Myc deficient HSCs are able to proliferate normally in vivo. In addition, their differentiation into more committed progenitors is blocked. These cells expressed increased adhesion molecules, which possibly prevent HSCs from being released from the special stem cell supporting stromal niche cells with which they closely associate. Secondly we used the liver as a model system to address the role of c-Myc in cellular growth, meaning the increase in cell size, and also cellular proliferation. Our results revealed c-Myc to play no role in metabolic cellular growth following a period of fasting. Following treatment with the xenobiotic TCPOBOP, c-Myc deficient hepatocytes increased in cell size as control hepatocytes and could surprisingly proliferate albeit at a reduced rate demonstrating a c-Myc independent proliferation pathway to exist in parenchymal cells. However, following partial hepatectomy, in which two-thirds of the liver was removed, mutant livers were severely restricted in their regeneration capacity compared to control livers demonstrating that c-Myc is essential for liver regeneration. Résumé Le facteur de transcription et proto-oncogène c-myc joue un rôle important dans l'intégration de nombreux signaux mitogéniques dans la cellule. Les conséquences de son activation sont étendues et variées et incluent la régulation de l'apoptose, de la différenciation, de la croissance et de la progression du cycle cellulaire. Même si plus de 20% des cancers montrent une dérégulation de c-myc, les connaissances sur ce facteur de transcription restent limitées et ses rôles physiologiques au cours du développement et chez l'adulte sont très peu connus. Nous avons étudié le rôle physiologique de c-Myc dans la molle osseuse et le foie murin en générant des souris adultes c-myc flox/flox. Dans ces souris, les allèles c-myc flox sont convertis en allèles nuls par le transgène Mx-Cre après induction avec du Poly-I.C. Pour notre étude du rôle de c-Myc dans le système hématopoiétique, nous nous sommes concentrés sur les aspects de la prolifération et de la différenciation cellulaire, ainsi que sur l'apoptose. Les souris déficientes pour c-Myc développent une anémie 3 à 8 semaines après la délétion du gène; tous les différents types cellulaires matures sont progressivement épuisés ce qui entraîne la mort des animaux. Néanmoins, outre sa capacité à induire la prolifération des cellules transitoires de la molle osseuse, nous avons inopinément découvert un nouveau rôle pour c-Myc dans le contrôle de la différenciation des cellules souches hématopoiétiques (HSC). Les HSC déficientes pour c-Myc prolifèrent normalement in vivo mais leur différenciation en progéniteurs plus engagés dans une voie de différenciation est bloquée. Ces cellules surexpriment certaines molécules d'adhésion ce qui empêcherait les HSC d'être relachées du stroma spécialisé, ou niche, auquel elles sont étroitement associées. D'autre part, nous avons utilisé le foie comme système modèle pour étudier le rôle de c-Myc dans la prolifération et dans la croissance cellulaire, c'est à dire l'augmentation de taille des cellules. Nos résultats ont révélé que c-Myc ne joue pas de rôle dans le métabolisme cellulaire qui suit une période de jeûne. L'augmentation de la taille cellulaire des hépatocytes déficients pour c-Myc suite au traitement avec l'agent xénobiotique TCPOBOP est identique à celle observée pour les cellules de contrôle. Le taux de prolifération des hépatocytes mutants est par contre réduit, indiquant qu'une voie de différenciation indépendante de c-Myc existe dans les cellules parenchymales. Néanmoins, après hépatectomie partielle, où deux-tiers du foie sont éliminés chirurgicalement, les foies mutants sont sévèrement limités dans leur capacité de régénération par rapport aux foies de contrôle, montrant ainsi que c-Myc est essentiel pour la régénération hépatique.
Resumo:
Interleukin-1beta (IL-1beta), reactive oxygen species (ROS), and thioredoxin-interacting protein (TXNIP) are all implicated in the pathogenesis of type 2 diabetes mellitus (T2DM). Here we review mechanisms directing IL-1beta production and its pathogenic role in islet dysfunction during chronic hyperglycemia. In doing so, we integrate previously disparate disease-driving mechanisms for IL-1beta, ROS, and TXNIP in T2DM into one unifying model in which the NLRP3 inflammasome plays a central role. The NLRP3 inflammasome also drives IL-1beta maturation and secretion in another disease of metabolic dysregulation, gout. Thus, we propose that the NLRP3 inflammasome contributes to the pathogenesis of T2DM and gout by functioning as a sensor for metabolic stress.
Resumo:
Graft-versus-host disease (GVHD) is the main complication after allogeneic bone marrow transplantation. Although the tissue damage and subsequent patient mortality are clearly dependent on T lymphocytes present in the grafted inoculum, the lethal effector molecules are unknown. Here, we show that acute lethal GVHD, induced by the transfer of splenocytes from C57BL/6 mice into sensitive BALB/c recipients, is dependent on both perforin and Fas ligand (FasL)-mediated lytic pathways. When spleen cells from mutant mice lacking both effector molecules were transferred to sublethally irradiated allogeneic recipients, mice survived. Delayed mortality was observed with grafted cells deficient in only one lytic mediator. In contrast, protection from lethal acute GVHD in resistant mice was exclusively perforin dependent. Perforin-FasL-deficient T cells failed to lyse most target cells in vitro. However, they still efficiently killed tumor necrosis factor alpha-sensitive fibroblasts, demonstrating that cytotoxic T cells possess a third lytic pathway.