96 resultados para Bax and apoptosis


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Summary The NACHT, LRR and PYD domains containing protein (NALP3) inflammasome is a key regulator of interleukin-1beta (IL-1beta) secretion. As there is strong evidence for a pro-inflammatory role of IL-1beta in rheumatoid arthritis (RA) and in murine models of arthritis, we explored the expression of the different components of the NALP3 inflammasome as well as other nucleotide oligomerization domain (NOD)-like receptors (NLRs) in synovium obtained from patients with RA. The expression of NLRs was also studied in fibroblast lines derived from joint tissue. By immunohistology, NALP3 and apoptosis-associated speck-like protein containing a CARD domain (ASC) were expressed in myeloid and endothelial cells and B cells. T cells expressed ASC but lacked NALP3. In synovial fibroblast lines, NALP3 expression was not detected at the RNA and protein levels and stimulation with known NALP3 agonists failed to induce IL-1beta secretion. Interestingly, we were unable to distinguish RA from osteoarthritis synovial samples on the basis of their basal level of RNA expression of known NLR proteins, though RA samples contained higher levels of caspase-1 assayed by enzyme-linked immunsorbent assay. These results indicate that myeloid and endothelial cells are the principal sources of inflammasome-mediated IL-1beta production in the synovium, and that synovial fibroblasts are unable to activate caspase-1 because they lack NALP3. The NALP3 inflammasome activity does not account for the difference in level of inflammation between RA and osteoarthritis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Regulated by histone acetyltransferases and deacetylases (HDACs), histone acetylation is a key epigenetic mechanism controlling chromatin structure, DNA accessibility, and gene expression. HDAC inhibitors induce growth arrest, differentiation, and apoptosis of tumor cells and are used as anticancer agents. Here we describe the effects of HDAC inhibitors on microbial sensing by macrophages and dendritic cells in vitro and host defenses against infection in vivo. HDAC inhibitors down-regulated the expression of numerous host defense genes, including pattern recognition receptors, kinases, transcription regulators, cytokines, chemokines, growth factors, and costimulatory molecules as assessed by genome-wide microarray analyses or innate immune responses of macrophages and dendritic cells stimulated with Toll-like receptor agonists. HDAC inhibitors induced the expression of Mi-2β and enhanced the DNA-binding activity of the Mi-2/NuRD complex that acts as a transcriptional repressor of macrophage cytokine production. In vivo, HDAC inhibitors increased the susceptibility to bacterial and fungal infections but conferred protection against toxic and septic shock. Thus, these data identify an essential role for HDAC inhibitors in the regulation of the expression of innate immune genes and host defenses against microbial pathogens.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Doxorubicin (DOX) is a potent available antitumor agent; however, its clinical use is limited because of its cardiotoxicity. Cell death is a key component in DOX-induced cardiotoxicity, but its mechanisms are elusive. Here, we explore the role of superoxide, nitric oxide (NO), and peroxynitrite in DOX-induced cell death using both in vivo and in vitro models of cardiotoxicity. Western blot analysis, real-time PCR, immunohistochemistry, flow cytometry, fluorescent microscopy, and biochemical assays were used to determine the markers of apoptosis/necrosis and sources of NO and superoxide and their production. Left ventricular function was measured by a pressure-volume system. We demonstrated increases in myocardial apoptosis (caspase-3 cleavage/activity, cytochrome c release, and TUNEL), inducible NO synthase (iNOS) expression, mitochondrial superoxide generation, 3-nitrotyrosine (NT) formation, matrix metalloproteinase (MMP)-2/MMP-9 gene expression, poly(ADP-ribose) polymerase activation [without major changes in NAD(P)H oxidase isoform 1, NAD(P)H oxidase isoform 2, p22(phox), p40(phox), p47(phox), p67(phox), xanthine oxidase, endothelial NOS, and neuronal NOS expression] and decreases in myocardial contractility, catalase, and glutathione peroxidase activities 5 days after DOX treatment to mice. All these effects of DOX were markedly attenuated by peroxynitrite scavengers. Doxorubicin dose dependently increased mitochondrial superoxide and NT generation and apoptosis/necrosis in cardiac-derived H9c2 cells. DOX- or peroxynitrite-induced apoptosis/necrosis positively correlated with intracellular NT formation and could be abolished by peroxynitrite scavengers. DOX-induced cell death and NT formation were also attenuated by selective iNOS inhibitors or in iNOS knockout mice. Various NO donors when coadministered with DOX but not alone dramatically enhanced DOX-induced cell death with concomitant increased NT formation. DOX-induced cell death was also attenuated by cell-permeable SOD but not by cell-permeable catalase, the xanthine oxidase inhibitor allopurinol, or the NADPH oxidase inhibitors apocynine or diphenylene iodonium. Thus, peroxynitrite is a major trigger of DOX-induced cell death both in vivo and in vivo, and the modulation of the pathways leading to its generation or its effective neutralization can be of significant therapeutic benefit.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

MEK kinase 1 (MEKK1) is a 196-kDa enzyme that is involved in the regulation of the c-Jun N-terminal kinase (JNK) pathway and apoptosis. In cells exposed to genotoxic agents including etoposide and cytosine arabinoside, MEKK1 is cleaved at Asp874 by caspases. The cleaved kinase domain of MEKK1, itself, stimulates caspase activity leading to apoptosis. Kinase-inactive MEKK1 expressed in HEK293 cells effectively blocks genotoxin-induced apoptosis. Treatment of cells with taxol, a microtubule stabilizing agent, did not induce MEKK1 cleavage in cells, and kinase-inactive MEKK1 expression failed to block taxol-induced apoptosis. MEKK1 became activated in HEK293 cells exposed to taxol, but in contrast to etoposide-treatment, taxol failed to increase JNK activity. Taxol treatment of cells, therefore, dissociates MEKK1 activation from the regulation of the JNK pathway. Overexpression of anti-apoptotic Bcl2 blocked MEKK1 and taxol-induced apoptosis but did not block the caspase-dependent cleavage of MEKK1 in response to etoposide. This indicates Bcl2 inhibition of apoptosis is, therefore, downstream of caspase-dependent MEKK1 cleavage. The results define the involvement of MEKK1 in the induction of apoptosis by genotoxins but not microtubule altering drugs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

CD8(+) CTLs play a critical role in antitumor immunity. However, vaccination with synthetic peptide containing CTL epitopes has not been generally effective in inducing protective antitumor immunity. In this study, we addressed the detailed mechanism(s) involved in this failure using a new tumor model of BALB/c transplanted tumors expressing NY-ESO-1, an extensively studied human cancer/testis Ag. Whereas peptide immunization with an H2-D(d)-restricted CTL epitope derived from NY-ESO-1 (NY-ESO-1 p81-88) induced NY-ESO-1(81-88)-specific CD8(+) T cells in draining lymph nodes and spleens, tumor growth was significantly enhanced. Single-cell analysis of specific CD8(+) T cells revealed that peptide immunization caused apoptosis of >80% of NY-ESO-1(81-88)-specific CD8(+) T cells at tumor sites and repetitive immunization further diminished the number of specific CD8(+) T cells. This phenomenon was associated with elevated surface expression of Fas and programmed death-1. When peptide vaccination was combined with an adjuvant, a TLR9 ligand CpG, the elevated Fas and programmed death-1 expression and apoptosis induction were not observed, and vaccine with peptide and CpG was associated with strong tumor growth inhibition. Selection of appropriate adjuvants is essential for development of effective cancer vaccines, with protection of effector T cells from peptide vaccine-induced apoptosis being a prime objective.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We have studied the role of the T cell receptor (TCR) beta chain transmembrane and cytoplasmic domains (betaTM/Cyto) in T cell signaling. Upon antigen stimulation, T lymphocytes expressing a TCR with mutant and betaTM and Cyto domains accumulate in large numbers and are specifically defective in undergoing activation-induced cell death (AICD). The mutant TCR poorly recruits the protein adaptor Carma-1 and is subsequently impaired in activating NF-kappaB. This signaling defect leads to a reduced expression of Fas ligand (FasL) and to a reduction in AICD. These beta chain domains are involved in discriminating cell division and apoptosis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Peroxisome proliferator-activated receptors (PPARs) are nuclear hormone receptors that mediate the effects of fatty acids and their derivatives at the transcriptional level. These receptors stimulate transcription after activation by their cognate ligand and binding to the promoter of target genes. In this review, we discuss how fatty acids affect PPAR functions in the cell. We first describe the structural features of the ligand binding domains of PPARs, as defined by crystallographic analyses. We then present the ligand-binding characteristics of each of the three PPARs (alpha, beta/delta, gamma) and relate ligand activation to various cellular processes: (i) fatty acid catabolism and modulation of the inflammatory response for PPARalpha, (ii) embryo implantation, cell proliferation and apoptosis for PPARbeta, and (iii) adipocytic differentiation, monocytic differentiation and cell cycle withdrawal for PPARgamma. Finally, we present possible cross-talk between the PPAR pathway and different endocrine routes within the cell, including the thyroid hormone and retinoid pathways.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Introduction: Various studies from hypoxic-ischemic animals haveinvestigated neuroprotection by targeting necrosis and apoptosis with inconclusive results. Three types of cell death have been described: apoptosis, necrosis and more recently, autophagic cell death. While autophagy is a physiological process of degradation of cellular components, excessive autophagy may be involved in cell death. Recent studies showed that inhibition of autophagy is neuroprotective in rodent neonatal models of cerebral ischemia. Furthermore, neonatal hypoxia-ischemia strongly increased neuronal autophagic flux which is linked to cell death in a rat model of perinatal asphyxia. Following our observations in animals, the aim of the present study was to characterize the different neuronal death phenotypes and to clarify whether autophagic cell death could be also involved in neuronal death in the human newborns after perinatal asphyxia. Methods: we selected retrospectively and anonymously all newborns who died in our unit of neonatology between 2004 and 2009, with the following criteria: gestational age >36 weeks, diagnosis of perinatal asphyxia (Apgar <5 at 5 minutes, arterial pH <7.0 at 1 hour of life and encephalopathy Sarnat III) and performed autopsy. The brain of 6 cases in asphyxia group and 6 control cases matching gestational age who died of pulmonary or other malformations were selected. On histological sections of thalamus, frontal cortex and hippocampus, different markers of apoptosis (caspase 3, TUNEL), autophagosomes (LC3-II) and lysosomes (LAMP1, Cathepsin D) were tested by immunohistochemistry. Results: Preliminary studies on markers of apoptosis (TUNEL, caspase 3) and of autophagy (Cathepsin D, LC3II, LAMP1) showed an expected increase of apoptosis, but also an increase of neuronal autophagic flux in the selected areas. The distribution seems to be region specific. Conclusion: This is the first time that autophagic flux linked with cell death is shown in brain of human babies, in association with hypoxicischemic encephalopathy. This work leads to a better understanding of the mechanisms associated with neuronal death following perinatal asphyxia and determines whether autophagy could be a promising therapeutic target.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Elevated circulating concentrations in modified LDL-cholesterol particles (e.g. oxidised LDL) and low levels in HDL increase not only the risk for diabetic patients to develop cardiovascular diseases but also may contribute to development and progression of diabetes by directly having adverse effects on β-cells. Chronic exposure of β-cells to 2 mM human oxidised LDL-cholesterol (oxLDL) increases the rate of apoptosis, reduce insulin biosynthesis and the secretory capacity of the cells in response to nutrients. In line with the protective role, HDL efficiently antagonised the harmful effects of ox- LDL, suggesting that low levels of HDL would be inefficient to protect β-cells against oxLDL attack in patients. Activation of endoplasmic reticulum (ER) stress is pointed out to contribute to β-cell dysfunction elicited by environmental stressors. In this study we investigated whether activation of ER stress is required for oxLDL to mediate detrimental effects on β-cells and we tested the potential antagonist properties of HDL: The mouse MIN6 insulin-secreting cells were cultured with 2 mM of LDL-cholesterol preparation (native or in vitro oxidized) in the presence or absence of 1 mM of HDL-cholesterol or the ER stress inhibitor 4-phenylbutyrate (4-PBA): Prolonged exposure of MIN6 cells to 2 mM oxLDL-cholesterol for 48 hours led to an increase in expression of ER stress markers such as ATF4, CHOP and p58 and stimulated the splicing of XBP-1 whereas, induction of these markers was not observable in the cells cultured with native LDL. Treatment of the cells with the 4-PBA chemical chaperone molecule efficiently blocked activation of the ER stress markers induced by oxLDL. The latter mediates β-cell dysfunction and apoptosis by diminishing the expression of islet brain 1 (IB1) and Bcl2. The levels of these two proteins were preserved in the cells that were co-treated with oxLDL and the 4-PBA. Consistent with this result we found that blockade of ER stress activation alleviated the loss of insulin synthesis and abolished apoptosis evoked by oxLDL. However incubation of the cells with 4-PBA did not prevent impairment of insulin secretion elicited by oxLDL, indicating that ER stress is not responsible for the oxLDL-mediated defect of insulin secretion. Co-incubation of the cells with HDL mimicked the effects of 4-PBA on the expression of IB1 and Blc2 and thereby counteracted oxLDL attacks on insulin synthesis and cell survivals. We found that HDL efficiently inhibited activation of the ER stress mediated by oxLDL: These data highlight the contribution of the ER stress in the defects of insulin synthesis and cell survivals induced by oxLDL and emphasize the potent role of HDL to counter activation of the oxLDL-mediated ER-stress activation:

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: The long latent stage seen in syphilis, followed by chronic central nervous system infection and inflammation, can be explained by the persistence of atypical cystic and granular forms of Treponema pallidum. We investigated whether a similar situation may occur in Lyme neuroborreliosis. METHOD: Atypical forms of Borrelia burgdorferi spirochetes were induced exposing cultures of Borrelia burgdorferi (strains B31 and ADB1) to such unfavorable conditions as osmotic and heat shock, and exposure to the binding agents Thioflavin S and Congo red. We also analyzed whether these forms may be induced in vitro, following infection of primary chicken and rat neurons, as well as rat and human astrocytes. We further analyzed whether atypical forms similar to those induced in vitro may also occur in vivo, in brains of three patients with Lyme neuroborreliosis. We used immunohistochemical methods to detect evidence of neuroinflammation in the form of reactive microglia and astrocytes. RESULTS: Under these conditions we observed atypical cystic, rolled and granular forms of these spirochetes. We characterized these abnormal forms by histochemical, immunohistochemical, dark field and atomic force microscopy (AFM) methods. The atypical and cystic forms found in the brains of three patients with neuropathologically confirmed Lyme neuroborreliosis were identical to those induced in vitro. We also observed nuclear fragmentation of the infected astrocytes using the TUNEL method. Abundant HLA-DR positive microglia and GFAP positive reactive astrocytes were present in the cerebral cortex. CONCLUSION: The results indicate that atypical extra- and intracellular pleomorphic and cystic forms of Borrelia burgdorferi and local neuroinflammation occur in the brain in chronic Lyme neuroborreliosis. The persistence of these more resistant spirochete forms, and their intracellular location in neurons and glial cells, may explain the long latent stage and persistence of Borrelia infection. The results also suggest that Borrelia burgdorferi may induce cellular dysfunction and apoptosis. The detection and recognition of atypical, cystic and granular forms in infected tissues is essential for the diagnosis and the treatment as they can occur in the absence of the typical spiral Borrelia form.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: Targeted delivery of anticancer chemotherapeutics such as mitoxantrone (MTX) can significantly intensify their cytotoxic effects selectively in solid tumors such as breast cancer. In the current study, folic acid (FA)-armed and MTX-conjugated magnetic nanoparticles (MNPs) were engineered for targeted eradication of folate receptor (FR)-positive cancerous cells. Polyethylene glycol (PEG), FA and MTX were covalently conjugated onto the MNPs to engineer the PEGylated FA-MTX-MNPs. The internalization studies were performed using fluorescein isothiocyanate (FITC)-labeled FA-decorated MNPs (FA-FITC-MNPs) in both FR-positive MCF-7 cells and FR-negative A549 cells by means of fluorescence microscopy and flow cytometry. The cellular and molecular impacts of FA-MTX-MNPs were examined using trypan blue cell viability and FITC-labeled annexin V apoptosis assays and 4',6-diamidino-2-phenylindole (DAPI) staining, DNA ladder and quantitative polymerase chain reaction (qPCR) assays. RESULTS: The FR-positive MCF-7 cells showed significant internalization of the FA-FITC-MNPs, but not the FR-negative A549 cells. The FR-positive cells treated with the PEGylated FA-MTX-MNPs exhibited the IC50 values of 3 μg/mL and 1.7 μg/mL, 24 h and 48 h post-treatment, respectively. DAPI staining and DNA ladder assays revealed significant condensation of nucleus and fragmentation of genomic DNA in the FR-positive MCF-7 cells treated with the PEGylated FA-MTX-MNPs as compared to the FR-negative A549 cells. The FITC-labeled annexin V assay confirmed emergence of late apoptosis (>80%) in the FR-positive MCF-7 cells treated with the PEGylated FA-MTX-MNPs, but not in the FR-negative A549 cells. The qPCR analysis confirmed profound cytotoxic impacts via alterations of apoptosis-related genes induced by MTX-FA-MNPs in MCF-7 cells, but not in the A549 cells. CONCLUSION: Our findings evince that the engineered PEGylated FA-MTX-MNPs can be specifically taken up by the FR-positive malignant cells and effectively demolish them through up-regulation of Bcl-2-associated X protein (Bax) and Caspase 9 and down-regulation of AKt. Hence, the engineered nanosystem is proposed for simultaneous targeted imaging and therapy of various cancers overexpressing FRs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

OBJECTIVES: Chloride intracellular channel protein 4 (Clic4) is a ubiquitously expressed protein involved in multiple cellular processes including cell-cycle control, cell differentiation, and apoptosis. Here, we investigated the role of Clic4 in pancreatic β-cell apoptosis. METHODS: We used βTC-tet cells and islets from β-cell specific Clic4 knockout mice (βClic4KO) and assessed cytokine-induced apoptosis, Bcl2 family protein expression and stability, and identified Clic4-interacting proteins by co-immunoprecipitation and mass spectrometry analysis. RESULTS: We show that cytokines increased Clic4 expression in βTC-tet cells and in mouse islets and siRNA-mediated silencing of Clic4 expression in βTC-tet cells or its genetic inactivation in islets β-cells, reduced cytokine-induced apoptosis. This was associated with increased expression of Bcl-2 and increased expression and phosphorylation of Bad. Measurement of Bcl-2 and Bad half-lives in βTC-tet cells showed that Clic4 silencing increased the stability of these proteins. In primary islets β-cells, absence of Clic4 expression increased Bcl-2 and Bcl-xL expression as well as expression and phosphorylation of Bad. Mass-spectrometry analysis of proteins co-immunoprecipitated with Clic4 from βTC-tet cells showed no association of Clic4 with Bcl-2 family proteins. However, Clic4 co-purified with proteins from the proteasome suggesting a possible role for Clic4 in regulating protein degradation. CONCLUSIONS: Collectively, our data show that Clic4 is a cytokine-induced gene that sensitizes β-cells to apoptosis by reducing the steady state levels of Bcl-2, Bad and phosphorylated Bad.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Adenylate kinases (AKs) are phosphotransferases that regulate the cellular adenine nucleotide composition and play a critical role in the energy homeostasis of all tissues. The AK2 isoenzyme is expressed in the mitochondrial intermembrane space and is mutated in reticular dysgenesis (RD), a rare form of severe combined immunodeficiency (SCID) in humans. RD is characterized by a maturation arrest in the myeloid and lymphoid lineages, leading to early onset, recurrent, and overwhelming infections. To gain insight into the pathophysiology of RD, we studied the effects of AK2 deficiency using the zebrafish model and induced pluripotent stem cells (iPSCs) derived from fibroblasts of an RD patient. In zebrafish, Ak2 deficiency affected hematopoietic stem and progenitor cell (HSPC) development with increased oxidative stress and apoptosis. AK2-deficient iPSCs recapitulated the characteristic myeloid maturation arrest at the promyelocyte stage and demonstrated an increased AMP/ADP ratio, indicative of an energy-depleted adenine nucleotide profile. Antioxidant treatment rescued the hematopoietic phenotypes in vivo in ak2 mutant zebrafish and restored differentiation of AK2-deficient iPSCs into mature granulocytes. Our results link hematopoietic cell fate in AK2 deficiency to cellular energy depletion and increased oxidative stress. This points to the potential use of antioxidants as a supportive therapeutic modality for patients with RD.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: Increasing evidences link T helper 17 (Th17) cells with multiple sclerosis (MS). In this context, interleukin-22 (IL-22), a Th17-linked cytokine, has been implicated in blood brain barrier breakdown and lymphocyte infiltration. Furthermore, polymorphism between MS patients and controls has been recently described in the gene coding for IL-22 binding protein (IL-22BP). Here, we aimed to better characterize IL-22 in the context of MS. METHODS: IL-22 and IL-22BP expressions were assessed by ELISA and qPCR in the following compartments of MS patients and control subjects: (1) the serum, (2) the cerebrospinal fluid, and (3) immune cells of peripheral blood. Identification of the IL-22 receptor subunit, IL-22R1, was performed by immunohistochemistry and immunofluorescence in human brain tissues and human primary astrocytes. The role of IL-22 on human primary astrocytes was evaluated using 7-AAD and annexin V, markers of cell viability and apoptosis, respectively. RESULTS: In a cohort of 141 MS patients and healthy control (HC) subjects, we found that serum levels of IL-22 were significantly higher in relapsing MS patients than in HC but also remitting and progressive MS patients. Monocytes and monocyte-derived dendritic cells contained an enhanced expression of mRNA coding for IL-22BP as compared to HC. Using immunohistochemistry and confocal microscopy, we found that IL-22 and its receptor were detected on astrocytes of brain tissues from both control subjects and MS patients, although in the latter, the expression was higher around blood vessels and in MS plaques. Cytometry-based functional assays revealed that addition of IL-22 improved the survival of human primary astrocytes. Furthermore, tumor necrosis factor α-treated astrocytes had a better long-term survival capacity upon IL-22 co-treatment. This protective effect of IL-22 seemed to be conferred, at least partially, by a decreased apoptosis. CONCLUSIONS: We show that (1) there is a dysregulation in the expression of IL-22 and its antagonist, IL-22BP, in MS patients, (2) IL-22 targets specifically astrocytes in the human brain, and (3) this cytokine confers an increased survival of the latter cells.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

To examine human gene expression during uncomplicated P. falciparum malaria, we obtained three samples (acute illness, treatment, and recovery) from 10 subjects and utilized each subject's recovery sample as their baseline. At the time of acute illness (day 1), subjects had upregulation of innate immune response, cytokine, and inflammation-related genes (IL-1β, IL-6, TNF, and IFN-γ), which was more frequent with parasitemias >100,000 per μL and body temperatures ≥39°C. Apoptosis-related genes (Fas, BAX, and TP53) were upregulated acutely and for several days thereafter (days 1-3). In contrast, the expression of immune-modulatory (transcription factor 7, HLV-DOA, and CD6) and apoptosis inhibitory (c-myc, caspase 8, and Fas Ligand G) genes was downregulated initially and returned to normal with clinical recovery (days 7-10). These results indicate that the innate immune response, cytokine, and apoptosis pathways are upregulated acutely in uncomplicated malaria with concomitant downregulation of immune-modulatory and apoptosis inhibitory genes.