48 resultados para Bad Laer Z 1


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Poly (ADP-ribose) polymerase 1 (PARP-1) is a constitutive enzyme, the major isoform of the PARP family, which is involved in the regulation of DNA repair, cell death, metabolism, and inflammatory responses. Pharmacological inhibitors of PARP provide significant therapeutic benefits in various preclinical disease models associated with tissue injury and inflammation. However, our understanding the role of PARP activation in the pathophysiology of liver inflammation and fibrosis is limited. In this study we investigated the role of PARP-1 in liver inflammation and fibrosis using acute and chronic models of carbon tetrachloride (CCl4 )-induced liver injury and fibrosis, a model of bile duct ligation (BDL)-induced hepatic fibrosis in vivo, and isolated liver-derived cells ex vivo. Pharmacological inhibition of PARP with structurally distinct inhibitors or genetic deletion of PARP-1 markedly attenuated CCl4 -induced hepatocyte death, inflammation, and fibrosis. Interestingly, the chronic CCl4 -induced liver injury was also characterized by mitochondrial dysfunction and dysregulation of numerous genes involved in metabolism. Most of these pathological changes were attenuated by PARP inhibitors. PARP inhibition not only prevented CCl4 -induced chronic liver inflammation and fibrosis, but was also able to reverse these pathological processes. PARP inhibitors also attenuated the development of BDL-induced hepatic fibrosis in mice. In liver biopsies of subjects with alcoholic or hepatitis B-induced cirrhosis, increased nitrative stress and PARP activation was noted. CONCLUSION: The reactive oxygen/nitrogen species-PARP pathway plays a pathogenetic role in the development of liver inflammation, metabolism, and fibrosis. PARP inhibitors are currently in clinical trials for oncological indications, and the current results indicate that liver inflammation and liver fibrosis may be additional clinical indications where PARP inhibition may be of translational potential.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lipin proteins (lipin 1, 2, and 3) regulate glycerolipid homeostasis by acting as phosphatidic acid phosphohydrolase (PAP) enzymes in the TG synthesis pathway and by regulating DNA-bound transcription factors to control gene transcription. Hepatic PAP activity could contribute to hepatic fat accumulation in response to physiological and pathophysiological stimuli. To examine the role of lipin 1 in regulating hepatic lipid metabolism, we generated mice that are deficient in lipin-1-encoded PAP activity in a liver-specific manner (Alb-Lpin1(-/-) mice). This allele of lipin 1 was still able to transcriptionally regulate the expression of its target genes encoding fatty acid oxidation enzymes, and the expression of these genes was not affected in Alb-Lpin1(-/-) mouse liver. Hepatic PAP activity was significantly reduced in mice with liver-specific lipin 1 deficiency. However, hepatocytes from Alb-Lpin1(-/-) mice had normal rates of TG synthesis, and steady-state hepatic TG levels were unaffected under fed and fasted conditions. Furthermore, Alb-Lpin1(-/-) mice were not protected from intrahepatic accumulation of diacylglyerol and TG after chronic feeding of a diet rich in fat and fructose. Collectively, these data demonstrate that marked deficits in hepatic PAP activity do not impair TG synthesis and accumulation under acute or chronic conditions of lipid overload.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: The ongoing Ebola outbreak led to accelerated efforts to test vaccine candidates. On the basis of a request by WHO, we aimed to assess the safety and immunogenicity of the monovalent, recombinant, chimpanzee adenovirus type-3 vector-based Ebola Zaire vaccine (ChAd3-EBO-Z). METHODS: We did this randomised, double-blind, placebo-controlled, dose-finding, phase 1/2a trial at the Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland. Participants (aged 18-65 years) were randomly assigned (2:2:1), via two computer-generated randomisation lists for individuals potentially deployed in endemic areas and those not deployed, to receive a single intramuscular dose of high-dose vaccine (5 × 10(10) viral particles), low-dose vaccine (2·5 × 10(10) viral particles), or placebo. Deployed participants were allocated to only the vaccine groups. Group allocation was concealed from non-deployed participants, investigators, and outcome assessors. The safety evaluation was not masked for potentially deployed participants, who were therefore not included in the safety analysis for comparison between the vaccine doses and placebo, but were pooled with the non-deployed group to compare immunogenicity. The main objectives were safety and immunogenicity of ChAd3-EBO-Z. We did analysis by intention to treat. This trial is registered with ClinicalTrials.gov, number NCT02289027. FINDINGS: Between Oct 24, 2014, and June 22, 2015, we randomly assigned 120 participants, of whom 18 (15%) were potentially deployed and 102 (85%) were non-deployed, to receive high-dose vaccine (n=49), low-dose vaccine (n=51), or placebo (n=20). Participants were followed up for 6 months. No vaccine-related serious adverse events were reported. We recorded local adverse events in 30 (75%) of 40 participants in the high-dose group, 33 (79%) of 42 participants in the low-dose group, and five (25%) of 20 participants in the placebo group. Fatigue or malaise was the most common systemic adverse event, reported in 25 (62%) participants in the high-dose group, 25 (60%) participants in the low-dose group, and five (25%) participants in the placebo group, followed by headache, reported in 23 (57%), 25 (60%), and three (15%) participants, respectively. Fever occurred 24 h after injection in 12 (30%) participants in the high-dose group and 11 (26%) participants in the low-dose group versus one (5%) participant in the placebo group. Geometric mean concentrations of IgG antibodies against Ebola glycoprotein peaked on day 28 at 51 μg/mL (95% CI 41·1-63·3) in the high-dose group, 44·9 μg/mL (25·8-56·3) in the low-dose group, and 5·2 μg/mL (3·5-7·6) in the placebo group, with respective response rates of 96% (95% CI 85·7-99·5), 96% (86·5-99·5), and 5% (0·1-24·9). Geometric mean concentrations decreased by day 180 to 25·5 μg/mL (95% CI 20·6-31·5) in the high-dose group, 22·1 μg/mL (19·3-28·6) in the low-dose group, and 3·2 μg/mL (2·4-4·9) in the placebo group. 28 (57%) participants given high-dose vaccine and 31 (61%) participants given low-dose vaccine developed glycoprotein-specific CD4 cell responses, and 33 (67%) and 35 (69%), respectively, developed CD8 responses. INTERPRETATION: ChAd3-EBO-Z was safe and well tolerated, although mild to moderate systemic adverse events were common. A single dose was immunogenic in almost all vaccine recipients. Antibody responses were still significantly present at 6 months. There was no significant difference between doses for safety and immunogenicity outcomes. This acceptable safety profile provides a reliable basis to proceed with phase 2 and phase 3 efficacy trials in Africa. FUNDING: Swiss State Secretariat for Education, Research and Innovation (SERI), through the EU Horizon 2020 Research and Innovation Programme.