207 resultados para BAX TRANSLOCATION
Resumo:
Shigella flexneri, by invading intestinal epithelial cells (IECs) and inducing inflammatory responses of the colonic mucosa, causes bacillary dysentery. Although M cells overlying Peyer's patches are commonly considered the primary site of entry of S. flexneri, indirect evidence suggests that bacteria can also use IECs as a portal of entry to the lamina propria. Passive delivery of secretory IgA (SIgA), the major immunoglobulin secreted at mucosal surfaces, has been shown to protect rabbits from experimental shigellosis, but no information exists as to its molecular role in maintaining luminal epithelial integrity. We have established that the interaction of virulent S. flexneri with the apical pole of a model intestinal epithelium consisting of polarized Caco-2 cell monolayers resulted in the progressive disruption of the tight junction network and actin depolymerization, eventually resulting in cell death. The lipopolysaccharide (LPS)-specific agglutinating SIgAC5 monoclonal antibody (MAb), but not monomeric IgAC5 or IgGC20 MAbs of the same specificity, achieved protective functions through combined mechanisms, including limitation of the interaction between S. flexneri and epithelial cells, maintenance of the tight junction seal, preservation of the cell morphology, reduction of NF-κB nuclear translocation, and inhibition of proinflammatory mediator secretion. Our results add to the understanding of the function of SIgA-mediated immune exclusion by identifying a mode of action whereby the formation of immune complexes translates into maintenance of the integrity of epithelial cells lining the mucosa. This novel mechanism of protection mediated by SIgA is important to extend the arsenal of effective strategies to fight against S. flexneri mucosal invasion.
Resumo:
The numbat has been reduced to two populations in Western Australia. To better understand the effects of range reduction on gene flow and genetic variation, and to address questions crucial for the species' management, we analysed mitochondrial DNA (mtDNA) sequences of free-ranging individuals and museum specimens. The results suggest recent connectivity between the remnant populations, although one of those may have lost significant amounts of genetic diversity during the recent population size reduction. We propose that for management purposes the remnant populations should be treated as a single historical lineage and that, subject to certain caveats, consideration should be given to population augmentation by translocation.
Resumo:
Polyphosphate (polyP) occurs ubiquitously in cells, but its functions are poorly understood and its synthesis has only been characterized in bacteria. Using x-ray crystallography, we identified a eukaryotic polyphosphate polymerase within the membrane-integral vacuolar transporter chaperone (VTC) complex. A 2.6 angstrom crystal structure of the catalytic domain grown in the presence of adenosine triphosphate (ATP) reveals polyP winding through a tunnel-shaped pocket. Nucleotide- and phosphate-bound structures suggest that the enzyme functions by metal-assisted cleavage of the ATP gamma-phosphate, which is then in-line transferred to an acceptor phosphate to form polyP chains. Mutational analysis of the transmembrane domain indicates that VTC may integrate cytoplasmic polymer synthesis with polyP membrane translocation. Identification of the polyP-synthesizing enzyme opens the way to determine the functions of polyP in lower eukaryotes.
Resumo:
We have previously reported that in tumorigenic pancreatic beta-cells, calcitriol exerts a potent antitumorigenic effect by inducing apoptosis, cell growth inhibition, and reduction of solid beta-cell tumors. Here we have studied the molecular pathways involved in the antineoplastic activity of calcitriol on mouse insulinoma beta TC(3) cells, mouse insulinoma beta TC expressing or not expressing the oncogene p53, and beta TC-tet cells overexpressing or not the antiapoptotic gene Bcl2. Our results indicate that calcitriol-induced apoptosis was dependent on the function of p53 and was associated with a biphasic increase in protein levels of transcription factor nuclear factor-kappa B. Calcitriol decreased cell viability by about 40% in p53-retaining beta TC and in beta TC(3) cells; in contrast, beta TC p53(-/-) cells were only minimally affected. Calcitriol-induced cell death was regulated by members of the Bcl-2 family of apoptosis regulatory proteins, as shown by calcitriol-induced up-regulation of proapoptotic Bax and Bak and the lack of calcitriol-induced cytotoxicity in Bcl-2-overexpressing insulinoma cells. Moreover, calcitriol-mediated arrest of beta TC(3) cells in the G(1) phase of the cell cycle was associated with the abnormal expression of p21 and G(2)/M-specific cyclin B2 genes and involved the DNA damage-inducible factor GADD45. Finally, in beta TC(3) cells, calcitriol modulated the expression of IGF-I and IGF-II genes. In conclusion, these findings contribute to the understanding of the antitumorigenic effects of calcitriol on tumorigenic pancreatic beta-cells and further support the rationale of its utilization in the treatment of patients with malignant insulinomas.
Resumo:
The genetics and pathogenesis of splenic marginal zone lymphoma are poorly understood. The lymphoma lacks chromosome translocation, and ~30% of cases are featured by 7q deletion, but the gene targeted by the deletion is unknown. A recent study showed inactivation of A20, a 'global' NF-kB negative regulator, in 1 of 12 splenic marginal zone lymphoma. To investigate further whether deregulation of the NF-kB pathway plays a role in the pathogenesis of splenic marginal zone lymphoma, we screened several NF-kB regulators for genetic changes by PCR and sequencing. Somatic mutations were found in A20 (6/46=13%), MYD88 (6/46=13%), CARD11 (3/34=8.8%), but not in CD79A, CD79B and ABIN1. Interestingly, these genetic changes are largely mutually exclusive from each other and MYD88 mutation was also mutually exclusive from 7q deletion. These results strongly suggest that deregulation of the TLR (toll like receptor) and BCR (B-cell receptor) signalling pathway may play an important role in the pathogenesis of splenic marginal zone lymphoma.
Resumo:
BACKGROUND: Food allergy is a common allergic disorder--especially in early childhood. The avoidance of the allergenic food is the only available method to prevent further reactions in sensitized patients. A better understanding of the immunologic mechanisms involved in this reaction would help to develop therapeutic approaches applicable to the prevention of food allergy. OBJECTIVE: To establish a multi-cell in vitro model of sensitized intestinal epithelium that mimics the intestinal epithelial barrier to study the capacity of probiotic microorganisms to modulate permeability, translocation and immunoreactivity of ovalbumin (OVA) used as a model antigen. METHODS: Polarized Caco-2 cell monolayers were conditioned by basolateral basophils and used to examine apical to basolateral transport of OVA by ELISA. Activation of basophils with translocated OVA was measured by beta-hexosaminidase release assay. This experimental setting was used to assess how microorganisms added apically affected these parameters. Basolateral secretion of cytokine/chemokines by polarized Caco-2 cell monolayers was analysed by ELISA. RESULTS: Basophils loaded with OVA-specific IgE responded to OVA in a dose-dependent manner. OVA transported across polarized Caco-2 cell monolayers was found to trigger basolateral basophil activation. Microorganisms including lactobacilli and Escherichia coli increased transepithelial electrical resistance while promoting OVA passage capable to trigger basophil activation. Non-inflammatory levels of IL-8 and thymic stromal lymphopoietin were produced basolaterally by Caco-2 cells exposed to microorganisms. CONCLUSION: The complex model designed in here is adequate to learn about the consequence of the interaction between microorganisms and epithelial cells vis-a-vis the barrier function and antigen translocation, two parameters essential to mucosal homeostasis. It can further serve as a direct tool to search for microorganisms with anti-allergic and anti-inflammatory properties.
Resumo:
The t(8;21) chromosomal translocation activates aberrant expression of the AML1-ETO (AE) fusion protein and is commonly associated with core binding factor acute myeloid leukaemia (CBF AML). Combining a conditional mouse model that closely resembles the slow evolution and the mosaic AE expression pattern of human t(8;21) CBF AML with global transcriptome sequencing, we find that disease progression was characterized by two principal pathogenic mechanisms. Initially, AE expression modified the lineage potential of haematopoietic stem cells (HSCs), resulting in the selective expansion of the myeloid compartment at the expense of normal erythro- and lymphopoiesis. This lineage skewing was followed by a second substantial rewiring of transcriptional networks occurring in the trajectory to manifest leukaemia. We also find that both HSC and lineage-restricted granulocyte macrophage progenitors (GMPs) acquired leukaemic stem cell (LSC) potential being capable of initiating and maintaining the disease. Finally, our data demonstrate that long-term expression of AE induces an indolent myeloproliferative disease (MPD)-like myeloid leukaemia phenotype with complete penetrance and that acute inactivation of AE function is a potential novel therapeutic option.
Resumo:
OBJECTIVE: To investigate the involvement of the nuclear factor (NF)-kappaB in the interleukin (IL)-1 beta-mediated macrophage migration inhibitory factor (MIF) gene activation. DESIGN: Prospective study. SETTING: Human reproduction research laboratory. PATIENT(S): Nine women with endometriotic lesions. INTERVENTION(S): Endometriotic lesions were obtained during laparoscopic surgery. MAIN OUTCOME MEASURE(S): The MIF protein secretion was analyzed by ELISA, MIF mRNA expression by quantitative real-time polymerase chain reaction (PCR), NF-kappaB translocation into the nucleus by electrophoresis mobility shift assay, I kappaB phosphorylation and degradation by Western blot, and human MIF promoter activity by transient cell transfection. RESULT(S): This study showed a significant dose-dependent increase of MIF protein secretion and mRNA expression, the NF-kappaB translocation into the nucleus, I kappaB phosphorylation, I kappaB degradation, and human MIF promoter activity in endometriotic stromal cells in response to IL-1 beta. Curcumin (NF-kappaB inhibitor) significantly inhibited all these IL-1 beta-mediated effects. Analysis of the activity of deletion constructs of the human MIF promoter and a computer search localized two putative regulatory elements corresponding to NF-kappaB binding sites at positions -2538/-2528 bp and -1389/-1380 bp. CONCLUSION(S): This study suggests the involvement of the nuclear transcription factor NF-kappaB in MIF gene activation in ectopic endometrial cells in response to IL-1 beta and identifies a possible pathway of endometriosis-associated inflammation and ectopic cell growth.
Resumo:
Gene expression signatures are used in the clinic as prognostic tools to determine the risk of individual patients with localized breast tumors developing distant metastasis. We lack a clear understanding, however, of whether these correlative biomarkers link to a common biological network that regulates metastasis. We find that the c-MYC oncoprotein coordinately regulates the expression of 13 different "poor-outcome" cancer signatures. In addition, functional inactivation of MYC in human breast cancer cells specifically inhibits distant metastasis in vivo and invasive behavior in vitro of these cells. These results suggest that MYC oncogene activity (as marked by "poor-prognosis" signature expression) may be necessary for the translocation of poor-outcome human breast tumors to distant sites.
Resumo:
Populations of the marble trout (Salmo marmoratus) have declined critically due to introgression by brown trout (Salmo trutta) strains. In order to define strategies for long-term conservation, we examined the genetic structure of the 8 known pure populations using 15 microsatellite loci. The analyses reveal extraordinarily strong genetic differentiation among populations separated by < 15 km, and extremely low levels of intrapopulation genetic variability. As natural recolonization seems highly unlikely, appropriate management and conservation strategies should comprise the reintroduction of pure populations from mixed stocks (translocation) to avoid further loss of genetic diversity.
Resumo:
Neurotensin (NT) is secreted from neurons and gastrointestinal endocrine cells. We previously reported that the three NT receptors (NTSRs) are expressed in pancreatic islets and beta cell lines on which we observed a protective effect of NT against cytotoxic agents. In this study, we explored the role of NT on insulin secretion in the endocrine pancreatic beta cells. We observed that NT stimulates insulin secretion at low glucose level and has a small inhibiting effect on stimulated insulin secretion from isolated islets or INS-1E cells. We studied the mechanisms by which NT elicited calcium concentration changes using fura-2 loaded islets or INS-1E cells. NT increases calcium influx through the opening of cationic channels. Similar calcium influxes were observed after treatment with NTSR selective ligands. NT-evoked calcium regulation involves PKC and the translocation of PKCalpha and PKCepsilon to the plasma membrane. Part of NT effects appears to be also mediated by PKA but not via the Erk pathway. Taken together, these data provide evidence for an important endocrine role of NT in the regulation of the secretory function of beta cells.
Resumo:
Burkitt lymphoma is one of the most aggressive tumors affecting humans. Together with the characteristic chromosomal translocation that constitutively activates the c-Myc oncogene, alterations in cellular tumor suppressor pathways are additionally required in order to allow the cells to overcome anti-oncogenic barriers and proliferate in an uncontrolled manner. The INK4a/ARF locus on chromosome 9p21 is considered a safeguard locus since it encodes the two important tumor suppressor proteins, p14 (ARF) and p16 (INK4a) . By regulating the p53 and Rb pathways p14 (ARF) and p16 (INK4a) respectively act as pro-apoptotic and cell cycle inhibitor proteins. The importance of the INK4a/ARF locus has been well documented in several human tumors as well as in Burkitt lymphoma. Although the mechanisms responsible for the transcriptional regulation of the INK4a/ARF locus have been thoroughly characterized, less is known about its posttranscriptional control. In this study we found that p16 (INK4a) and p14 (Arf) are concurrently inactivated in a panel of BL cell lines. We demonstrate that along with the epigenetic silencing of the p16INK4a gene, the complete inactivation of the locus is achieved by the improper turnover of INK4/ARF proteins by the ubiquitin-proteasome system (UPS), as the proteasome inhibitor MG-132 blocks p14 (ARF) degradation and induces a dramatic stabilization of the p16 (INK4a ) protein. We establish that the simultaneous deregulation of both DNA methylation patterns and the ubiquitin-dependent proteolysis system is required to completely inactive the INK4/ARF locus, opening new prospects for the understanding and treatment of Burkitt lymphoma.
Resumo:
To investigate the role of the coreceptor CD8 and lipid rafts in cytotoxic T lymphocyte (CTL) activation, we used soluble mono-and multimeric H-2Kd-peptide complexes and cloned S14 CTL specific for a photoreactive derivative of the Plasmodium berghei circumsporozoite (PbCS) peptide 252-260 [PbCS(ABA)]. We report that activation of CTL in suspension requires multimeric Kd-PbCS(ABA) complexes co-engaging TCR and CD8. Using TCR ligand photo-cross-linking, we find that monomeric Kd-PbCS(ABA) complexes promote association of TCR/CD3 with CD8/p56lck. Dimerization of these adducts results in activation of p56lck in lipid rafts, where phosphatases are excluded. Additional cross-linking further increases p56lck kinase activity, induces translocation of TCR/CD3 and other signaling molecules to lipid rafts and intracellular calcium mobilization. These events are prevented by blocking Src kinases or CD8 binding to TCR-associated Kd molecules, indicating that CTL activation is initiated by cross-linking of CD8-associated p56lck. They are also inhibited by methyl-beta-cyclodextrin, which disrupts rafts and by dipalmitoyl phosphatidylethanolamine, which interferes with TCR signaling. Because efficient association of CD8 and p56lck takes place in rafts, both reagents, though in different ways, impair coupling of p56lck to TCR, thereby inhibiting the initial and essential activation of p56lck induced by cross-linking of engaged TCR.
Resumo:
Introduction: Apoptosis plays a central role in chronic hepatitis C virus (HCV) infection. Although the activation of cell death signals has been reported, HCV infection persists in most patients suggesting a pro-survival adaptation, eventually developing hepatocellular carcinoma. This study focused on the role of mitochondria in the activation of pro- and antiapoptotic response in cells expressing HCV proteins. Materials and Methods: Human Osteosarcoma U2-OS cells inducibly expressing the HCV polyprotein; huh7.5 hepatoma cells transfected with full length HCV genome. Results: Long term induction of viral proteins in U2-OS cells induced a cyclosporine A-sensitive cytochrome c partial release from mitochondria, revealed by immunofluorescence, western blot and spectral analysis. In HCV-transfected Huh7.5 cells, release of the apoptosis inducing factor (AIF) with no apparent nuclear translocation was also observed. HCV positive cells displayed an HIF-dependent enhanced glycolysis, charachterized by up-regulation of the mitochondria-bound Hexokinase II (HKII); preliminary data on signal transduction pathway revealed the iperphosphorylation of Glycogen synthase kinase 3b(GSK3b). Conclusion: HCV causes a cell stress activating an early apoptotic response, the entity of which likely depends on the cell type. Nevertheless a wide series of cell survival mechanisms are also triggered resulting in a metabolic adaptation possibly favouring carcinogenesis. Based on our results, we propose a pro-survival mechanism linking HCV infection to inhibition of GSK-3b, stabilization of HIF1a and up-regulation of HKII, the last events causing a glycolytic shift and protecting from apoptosis.
Resumo:
AbstractBACKGROUND: Patients suffering from ulcerative colitis (UC) bear an increased risk for colorectal cancer. Due to the sparsity of colitis-associated cancer (CAC) and the long duration between UC initiation and overt carcinoma, elucidating mechanisms of inflammation-associated carcinogenesis in the gut is particularly challenging. Adequate murine models are thus highly desirable. For human CACs a high frequency of chromosomal instability (CIN) reflected by aneuploidy could be shown, exceeding that of sporadic carcinomas. The aim of this study was to analyze mouse models of CAC with regard to CIN. Additionally, protein expression of p53, beta-catenin and Ki67 was measured to further characterize murine tumor development in comparison to UC-associated carcinogenesis in men.METHODS: The AOM/DSS model (n = 23) and IL-10(-/-) mice (n = 8) were applied to monitor malignancy development via endoscopy and to analyze premalignant and malignant stages of CACs. CIN was assessed using DNA-image cytometry. Protein expression of p53, beta-catenin and Ki67 was evaluated by immunohistochemistry. The degree of inflammation was analyzed by histology and paralleled to local interferon-γ release.RESULTS: CIN was detected in 81.25% of all murine CACs induced by AOM/DSS, while all carcinomas that arose in IL-10(-/-) mice were chromosomally stable. Beta-catenin expression was strongly membranous in IL-10(-/-) mice, while 87.50% of AOM/DSS-induced tumors showed cytoplasmatic and/or nuclear translocation of beta-catenin. p53 expression was high in both models and Ki67 staining revealed higher proliferation of IL-10(-/-)-induced CACs.CONCLUSIONS: AOM/DSS-colitis, but not IL-10(-/-) mice, could provide a powerful murine model to mechanistically investigate CIN in colitis-associated carcinogenesis.PMID: 21799775 [PubMed - in process] PMCID: PMC3142131Free PMC Article