199 resultados para B cell biology
Resumo:
TNF is well characterized as a mediator of inflammatory responses. TNF also facilitates organization of secondary lymphoid organs, particularly B cell follicles and germinal centers, a hallmark of T-dependent Ab responses. TNF also mediates defense against tumors. We examined the role of TNF in the development of inflammatory autoimmune disorders resembling systemic lupus erythematosus and Sjögren's syndrome induced by excess B cell-activating factor belonging to the TNF family (BAFF), by generating BAFF-transgenic (Tg) mice lacking TNF. TNF(-/-) BAFF-Tg mice resembled TNF(-/-) mice, in that they lacked B cell follicles, follicular dendritic cells, and germinal centers, and have impaired responses to T-dependent Ags. Nevertheless, TNF(-/-) BAFF-Tg mice developed autoimmune disorders similar to that of BAFF-Tg mice. Disease in TNF(-/-) BAFF-Tg mice correlates with the expansion of transitional type 2 and marginal zone B cell populations and enhanced T-independent immune responses. TNF deficiency in BAFF-Tg mice also led to a surprisingly high incidence of B cell lymphomas (>35%), which most likely resulted from the combined effects of BAFF promotion of neoplastic B cell survival, coupled with lack of protective antitumor defense by TNF. Thus, TNF appears to be dispensable for BAFF-mediated autoimmune disorders and may, in fact, counter any proneoplastic effects of high levels of BAFF in diseases such as Sjögren's syndrome, systemic lupus erythematosus, and rheumatoid arthritis.
Resumo:
A key element for the development of suitable anti-cancer drugs is the identification of cancer-specific enzymatic activities that can be therapeutically targeted. Mucosa-associated lymphoid tissue transformation protein 1 (MALT1) is a proto-oncogene that contributes to tumorigenesis in diffuse large B-cell lymphoma (DLBCL) of the activated B-cell (ABC) subtype, the least curable subtype of DLBCL. Recent data suggest that MALT1 has proteolytic activity, but it is unknown whether this activity is relevant for tumor growth. Here we report that MALT1 is constitutively active in DLBCL lines of the ABC but not the GCB subtype. Inhibition of the MALT1 proteolytic activity led to reduced expression of growth factors and apoptosis inhibitors, and specifically affected the growth and survival of ABC DLBCL lines. These results demonstrate a key role for the proteolytic activity of MALT1 in DLBCL of the ABC subtype, and provide a rationale for the development of pharmacological inhibitors of MALT1 in DLBCL therapy.
Resumo:
A proliferation-inducing ligand (APRIL) is a ligand of the tumor necrosis factor (TNF) family that stimulates tumor cell growth in vitro and in vivo. Expression of APRIL is highly upregulated in many tumors including colon and prostate carcinomas. Here we identify B cell maturation antigen (BCMA) and transmembrane activator and calcium modulator and cyclophilin ligand (CAML) interactor (TACI), two predicted members of the TNF receptor family, as receptors for APRIL. APRIL binds BCMA with higher affinity than TACI. A soluble form of BCMA, which inhibits the proliferative activity of APRIL in vitro, decreases tumor cell proliferation in nude mice. Growth of HT29 colon carcinoma cells is blocked when mice are treated once per week with the soluble receptor. These results suggest an important role for APRIL in tumorigenesis and point towards a novel anticancer strategy.
Resumo:
B-cell-activating factor of the TNF family (BAFF)/BLyS contributes to B-cell homeostasis and function in the periphery. BAFF is expressed as a membrane-bound protein or released by proteolytic cleavage, but the functional importance of this processing event is poorly understood. Mice expressing BAFF with a mutated furin consensus cleavage site, i.e. furin-mutant BAFF (fmBAFF), were not different from BAFF-deficient mice with regard to their B-cell populations and responses to immunization. It is however noteworthy that an alternative processing event releases some soluble BAFF in fmBAFF mice. Mild overexpression (∼ 5-fold) of fmBAFF alone generated intermediate levels of B cells without improving humoral responses to immunization. Processed BAFF was however important for B-cell homeostasis, as peripheral B-cell populations and antibody responses were readily restored by administration of soluble BAFF trimers in BAFF-deficient mice. However, the rescue of CD23 expression in B cells of BAFF-deficient mice required both soluble BAFF trimers and fmBAFF, or a polymeric form of soluble BAFF (BAFF 60-mer). These results point to a predominant role of processed BAFF for B-cell homeostasis and function, and indicate possible accessory roles for membrane-bound BAFF.
Resumo:
This article reviews the spectrum of Epstein-Barr virus and Kaposi sarcoma herpesvirus (KSHV/HHV-8)-associated B-cell lymphoid proliferations, their pathologic features and clinical presentation, diagnostic criteria, and pathogenetic aspects. Emphasis is on the differential diagnosis issues and difficulties that the pathologist may face for the correct identification and interpretation of these lesions.
Resumo:
Splenic marginal zone (MZ) B cells are a lineage distinct from follicular and peritoneal B1 B cells. They are located next to the marginal sinus where blood is released. Here they pick up antigens and shuttle the load onto follicular dendritic cells inside the follicle. On activation, MZ B cells rapidly differentiate into plasmablasts secreting antibodies, thereby mediating humoral immune responses against blood-borne type 2 T-independent antigens. As Krüppel-like factors are implicated in cell differentiation/function in various tissues, we studied the function of basic Krüppel-like factor (BKLF/KLF3) in B cells. Whereas B-cell development in the bone marrow of KLF3-transgenic mice was unaffected, MZ B-cell numbers in spleen were increased considerably. As revealed in chimeric mice, this occurred cell autonomously, increasing both MZ and peritoneal B1 B-cell subsets. Comparing KLF3-transgenic and nontransgenic follicular B cells by RNA-microarray revealed that KLF3 regulates a subset of genes that was similarly up-regulated/down-regulated on normal MZ B-cell differentiation. Indeed, KLF3 expression overcame the lack of MZ B cells caused by different genetic alterations, such as CD19-deficiency or blockade of B-cell activating factor-receptor signaling, indicating that KLF3 may complement alternative nuclear factor-κB signaling. Thus, KLF3 is a driving force toward MZ B-cell maturation.
Resumo:
Background The superiority of a chemotherapy with doxorubicin, cyclophosphamide, vindesine, bleomycin and prednisone (ACVBP) in comparison with cyclophosphamide, doxorubicin, vincristin and prednisone plus radiotherapy for young patients with localized diffuse large B-cell lymphoma (DLBCL) was previously demonstrated. We report the results of a trial which evaluates the role of rituximab combined with ACVBP (R-ACVBP) in these patients. Patients and methods Untreated patients younger than 66 years with stage I or II DLBCL and no adverse prognostic factors of the age-adjusted International Prognostic Index were randomly assigned to receive three cycles of ACVBP plus sequential consolidation with or without the addition of four infusions of rituximab. Results A total of 223 patients were randomly allocated to the study, 110 in the R-ACVBP group and 113 in the ACVBP group. After a median follow-up of 43 months, our 3-year estimate of event-free survival was 93% in the R-ACVBP group and 82% in the ACVBP group (P = 0.0487). Three-year estimate of progression-free survival was increased in the R-ACVBP group (95% versus 83%, P = 0.0205). Overall survival did not differ between the two groups with a 3-year estimates of 98% and 97%, respectively (P = 0.686). Conclusion In young patients with low-risk localized DLBCL, rituximab combined with three cycles of ACVBP plus consolidation is significantly superior to ACVBP plus consolidation alone.
Resumo:
The dic(9;20)(p13.2;q11.2) is reported to be present in ∼2% of childhood B-cell precursor acute lymphoblastic leukemia (BCP ALL). However, it easily escapes detection by G-banding analysis and its true prevalence is hence unknown. We performed interphase fluorescence in situ hybridization analyses-in a three-step manner-using probes for: (i) CDKN2A at 9p21, (ii) 20p and 20q subtelomeres and (iii) cen9 and cen20. Out of 1033 BCP ALLs diagnosed from 2001 to 2006, 533 were analyzed; 16% (84/533) displayed 9p21 deletions, of which 30% (25/84) had dic(9;20). Thus, dic(9;20)-positivity was found in 4.7% (25/533), making it the third most common genetic subgroup after high hyperdiploidy and t(12;21)(p13;q22). The dic(9;20) was associated with a female predominance and an age peak at 3 years; 18/25 (72%) were allocated to non-standard risk treatment at diagnosis. Including cases detected by G-banding alone, 29 dic(9;20)-positive cases were treated according to the NOPHO ALL 2000 protocol. Relapses occurred in 24% (7/29) resulting in a 5-year event-free survival of 0.69, which was significantly worse than for t(12;21) (0.87; P=0.002) and high hyperdiploidy (0.82; P=0.04). We conclude that dic(9;20) is twice as common as previously surmised, with many cases going undetected by G-banding analysis, and that dic(9;20) should be considered a non-standard risk abnormality.
Resumo:
Lat(Y136F) knock-in mice harbor a point mutation in Tyr(136) of the linker for activation of T cells and show accumulation of Th2 effector cells and IgG1 and IgE hypergammaglobulinemia. B cell activation is not a direct effect of the mutation on B cells since in the absence of T cells, mutant B cells do not show an activated phenotype. After adoptive transfer of linker for activation of T cell mutant T cells into wild-type, T cell-deficient recipients, recipient B cells become activated. We show in vivo and in vitro that the Lat(Y136F) mutation promotes T cell-dependent B cell activation leading to germinal center, memory, and plasma cell formation even in an MHC class II-independent manner. All the plasma and memory B cell populations found in physiological T cell-dependent B cell responses are found. Characterization of the abundant plasmablasts found in secondary lymphoid organs of Lat(Y136F) mice revealed the presence of a previously uncharacterized CD93-expressing subpopulation, whose presence was confirmed in wild-type mice after immunization. In Lat(Y136F) mice, B cell activation was polyclonal and not Ag-driven because the increase in serum IgG1 and IgE concentrations involved Abs and autoantibodies with different specificities equally. Although the noncomplement-fixing IgG1 and IgE are the only isotypes significantly increased in Lat(Y136F) serum, we observed early-onset systemic autoimmunity with nephritis showing IgE autoantibody deposits and severe proteinuria. These results show that Th2 cells developing in Lat(Y136F) mice can trigger polyclonal B cell activation and thereby lead to systemic autoimmune disease.
Resumo:
Karyotype analysis of acute lymphoblastic leukemia (ALL) at diagnosis has provided valuable prognostic markers for treatment stratification. However, reports of cytogenetic studies of relapsed ALL samples are limited. We compared the karyotypes from 436 nonselected B-cell precursor ALL patients at initial diagnosis and of 76 patients at first relapse. We noticed a relative increase of karyotypes that did not fall into the classic ALL cytogenetic subgroups (high hyperdiploidy, t(12;21), t(9;22), 11q23, t(1;19), <45 chromosomes) in a group of 29 patients at relapse (38%) compared to 130 patients at presentation (30%). Non-classical cytogenetic aberrations in these 29 patients were mostly found on chromosomes 1, 2, 7, 9, 13, 14, and 17. We also describe six rare reciprocal translocations, three of which involved 14q32. The most frequent abnormalities were found in 9p (12/29 cases) and were associated with a marked decrease in the duration of the second remission, but not of the probability of 10-year event-free survival after relapse treatment. From 29 patients with non-classical cytogenetic aberrations, only 8 (28%) had been stratified to a high risk-arm on the first treatment protocol, suggesting that this subgroup might benefit from the identification of new prognostic markers in future studies.
Resumo:
The oligomeric state of BAFF (B cell activing factor), a tumor necrosis factor (TNF) family cytokine that plays a critical role in B cell development and survival, has been the subject of recent debate. Myc-tagged BAFF starting at residue Gln136 was previously reported to crystallize as trimers at pH 4.5, whereas a histidine-tagged construct of BAFF, starting at residue Ala134, formed a virus-like cluster containing 60 monomers when crystallized at pH 9.0. The formation of the BAFF 60-mer was pH dependent, requiring pH >or= 7.0. More recently, 60-mer formation was suggested to be artificially induced by the histidine tag, and it was proposed that BAFF, like all other TNF family members, is trimeric. We report here that a construct of BAFF with no amino-terminal tag (Ala134-BAFF) can form a 60-mer in solution. Using size exclusion chromatography and static light scattering to monitor trimer to 60-mer ratios in BAFF preparations, we find that 60-mer formation is pH-dependent and requires histidine 218 within the DE loop of BAFF. Biacore measurements established that the affinity of Ala134-BAFF for the BAFF receptor BAFFR/BR3 is similar to that of myc-Gln136-BAFF, which is exclusively trimeric in solution. However, Ala134-BAFF is more efficacious than myc-Gln136-BAFF in inducing B cell proliferation in vitro. We additionally show that BAFF that is processed and secreted by 293T cells transfected with full-length BAFF, or by a histiocytic lymphoma cell line (U937) that expresses BAFF endogenously, forms a pH-dependent 60-mer in solution. Our results indicate that the formation of the 60-mer in solution by the BAFF extracellular domain is an intrinsic property of the protein, and therefore that this more active form of BAFF may be physiologically relevant.
Resumo:
Myeloid cell leukemia-1 (MCL1) is an anti-apoptotic member of the BCL2 family that is deregulated in various solid and hematological malignancies. However, its role in the molecular pathogenesis of diffuse large B-cell lymphoma (DLBCL) is unclear. We analyzed gene expression profiling data from 350 DLBCL patient samples and detected that activated B-cell-like (ABC) DLBCLs express MCL1 at significantly higher levels compared with germinal center B-cell-like DLBCL patient samples (P=2.7 × 10(-10)). Immunohistochemistry confirmed high MCL1 protein expression predominantly in ABC DLBCL in an independent patient cohort (n=249; P=0.001). To elucidate molecular mechanisms leading to aberrant MCL1 expression, we analyzed array comparative genomic hybridization data of 203 DLBCL samples and identified recurrent chromosomal gains/amplifications of the MCL1 locus that occurred in 26% of ABC DLBCLs. In addition, aberrant STAT3 signaling contributed to high MCL1 expression in this subtype. Knockdown of MCL1 as well as treatment with the BH3-mimetic obatoclax induced apoptotic cell death in MCL1-positive DLBCL cell lines. In summary, MCL1 is deregulated in a significant fraction of ABC DLBCLs and contributes to therapy resistance. These data suggest that specific inhibition of MCL1 might be utilized therapeutically in a subset of DLBCLs.
Resumo:
Anti-idiotype antibody therapy of B-cell lymphomas, despite numerous promising experimental and clinical studies, has so far met with limited success. Tailor-made monoclonal anti-idiotype antibodies have been injected into a large series of lymphoma patients, with a few impressive complete tumour remissions but a large majority of negative responses. The results presented here suggest that, by coupling to antilymphoma idiotype antibodies a few molecules of the tetanus toxin universal epitope peptide P2 (830-843), one could markedly increase the efficiency of this therapy. We show that after 2-hr incubation with conjugates consisting of the tetanus toxin peptide P2 coupled by an S-S bridge to monoclonal antibodies directed to the lambda light chain of human immunoglobulin, human B-lymphoma cells can be specifically lysed by a CD4 T-lymphocyte clone specific for the P2 peptide. Antibody without peptide did not induce B-cell killing by the CD4 T-lymphocyte clone. The free cysteine-peptide was also able to induce lysis of the B-lymphoma target by the T-lymphocyte clone, but at a molar concentration 500 to 1000 times higher than that of the coupled peptide. Proliferation assays confirmed that the antibody-peptide conjugate was antigenically active at a much lower concentration than the free peptide. They also showed that antibody-peptide conjugates required an intact processing function of the B cell for peptide presentation, which could be selectively inhibited by leupeptin and chloroquine.(ABSTRACT TRUNCATED AT 250 WORDS)