69 resultados para Army ants


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reproductive division of labour is a defining characteristic of eusociality in insect societies. The task of reproduction is performed by the fertile males and queens of the colony, while the non-fertile female worker caste performs all other tasks related to colony upkeep, foraging and nest defence. Division of labour, or polyethism, within the worker caste is organized such that specific tasks are performed by discrete groups of individuals. Ordinarily, workers of one group will not participate in the tasks of other groups making the groups of workers behaviourally distinct. In some eusocial species, this has led to the evolution of a remarkable diversity of subcaste morphologies within the worker caste, and a division of labour amongst the subcastes. This caste polyethism is best represented in many species of ants where a smaller-bodied minor subcaste typically performs foraging duties while larger individuals of the major subcaste are tasked with nest defence. Recent work suggests that polyethism in the worker caste is influenced by an evolutionarily conserved, yet diversely regulated, gene called foraging (for), which encodes a cGMP-dependent protein kinase (PKG). Additionally, flexibility in the activity of this enzyme allows for workers from one task group to assist the workers of other task groups in times of need during the colony's life.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Formica rufa group (red wood ants) currently includes six species. Nevertheless, during previous work based on molecular markers, we showed the existence of one population morphologically identified as F. lugubris, but genetically different from all other analysed populations of this species. This population could represent a cryptic species within the Swiss National Park and has been provisionally named Formica lugubris-A2. To verify our hypothesis, we conducted a behavioural test based on the ability of ants to recognize pupae of their own species when compared to those of another species. The three red wood ant species present in the Swiss National Park (F. lugubris, F. paralugubris and F. aquilonia) and the F. lugubris-A2 population were used in our study. Results indicate that the F. lugubris-A2 population differs from other F. lugubris and from all other species in the behaviour of its workers and in the way its pupae are discriminated by other species. This is in accordance with the genetic data and strengthens our hypothesis on the existence of a new cryptic red wood ant species within the Swiss National Park.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Social organisms face a high risk of epidemics, and respond to this threat by combining efficient individual and collective defences against pathogens. An intriguing and little studied feature of social animals is that individual pathogen resistance may depend not only on genetic or maternal factors, but also on the social environment during development. Here, we used a cross-fostering experiment to investigate whether the pathogen resistance of individual ant workers was shaped by their own colony of origin or by the colony of origin of their carers. The origin of care-giving workers significantly influenced the ability of newly eclosed cross-fostered Formica selysi workers to resist the fungal entomopathogen Beauveria bassiana. In particular, carers that were more resistant to the fungal entomopathogen reared more resistant workers. This effect occurred in the absence of post-infection social interactions, such as trophallaxis and allogrooming. The colony of origin of eggs significantly influenced the survival of the resulting individuals in both control and pathogen treatments. There was no significant effect of the social organization (i.e. whether colonies contain a single or multiple queens) of the colony of origin of either carers or eggs. Our experiment reveals that social interactions during development play a central role in moulding the resistance of emerging workers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ants provide remarkable examples of equivalent genotypes developing into divergent and discrete phenotypes. Diploid eggs can develop either into queens, which specialize in reproduction, or workers, which participate in cooperative tasks such as building the nest, collecting food, and rearing the young. In contrast, the differentiation between males and females generally depends upon whether eggs are fertilized, with fertilized (diploid) eggs giving rise to females and unfertilized (haploid) eggs giving rise to males. To obtain a comprehensive picture of the relative contributions of gender (sex), caste, developmental stage, and species divergence to gene expression evolution, we investigated gene expression patterns in pupal and adult queens, workers, and males of two species of fire ants, Solenopsis invicta and S. richteri. Microarray hybridizations revealed that variation in gene expression profiles is influenced more by developmental stage than by caste membership, sex, or species identity. The second major contributor to variation in gene expression was the combination of sex and caste. Although workers and queens share equivalent diploid nuclear genomes, they have highly distinctive patterns of gene expression in both the pupal and the adult stages, as might be expected given their extraordinary level of phenotypic differentiation. Overall, the difference in the proportion of differentially expressed genes was greater between workers and males than between workers and queens or queens and males, consistent with the fact that workers and males share neither gender nor reproductive capability. Moreover, between-species comparisons revealed that the greatest difference in gene expression patterns occurred in adult workers, a finding consistent with the fact that adult workers most directly experience the distinct external environments characterizing the different habitats occupied by the two species. Thus, much of the evolution of gene expression in ants may occur in the worker caste, despite the fact that these individuals are largely or completely sterile. Analyses of gene expression evolution revealed a combination of positive selection and relaxation of stabilizing selection as important factors driving the evolution of such genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Genetic diversity benefits for social insect colonies headed by polyandrous queens have received intense attention, whereas sexual selection remains little explored. Yet mates of the same queen may engage in sperm competition over the siring of offspring, and this could confer benefits on queens if the most successful sire in each colony (the majority sire) produces gynes (daughter queens) of higher quality. These benefits could be increased if high-quality sires make queens increase the percentage of eggs that they fertilize (unfertilized eggs develop into sons in social hymenopterans), or if daughters of better genetic quality are over-represented in the gyne versus worker class. Such effects would lead to female-biased sex ratios in colonies with high-quality majority gynes. I tested these ideas in field colonies of Lasius niger black garden ants, using body mass of gynes as a fitness trait as it is known to correlate with future fecundity. Also, I established the paternity of gynes through microsatellite DNA offspring analyses. Majority sires did not always produce heavier gynes in L. niger, but whenever they did do so colonies produced more females, numerically and in terms of the energetic investment in female versus male production. Better quality sires may be able to induce queens to fertilize more eggs or so-called caste shunting may occur wherever the daughters of better males are preferentially shunted to into the gyne caste. My study supports that integrating sexual selection and social evolutionary studies may bring a deeper understanding of mating system evolution in social insects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Review of the book . Social Evolution in Ants. Bourke, A. F. G. and Franks, N. R. 1995. Princeton University Press, Princeton, New Jersey, xiii + 529 pp. ISBN o-691-04427-9 (cl), O-691 -04426-o (pbk)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intraspecific variability in social organization is common, yet the underlying causes are rarely known. In the fire ant Solenopsis invicta, the existence of two divergent forms of social organization is under the control of a single Mendelian genomic element marked by two variants of an odorant-binding protein gene. Here we characterize the genomic region responsible for this important social polymorphism, and show that it is part of a pair of heteromorphic chromosomes that have many of the key properties of sex chromosomes. The two variants, hereafter referred to as the social B and social b (SB and Sb) chromosomes, are characterized by a large region of approximately 13 megabases (55% of the chromosome) in which recombination is completely suppressed between SB and Sb. Recombination seems to occur normally between the SB chromosomes but not between Sb chromosomes because Sb/Sb individuals are non-viable. Genomic comparisons revealed limited differentiation between SB and Sb, and the vast majority of the 616 genes identified in the non-recombining region are present in the two variants. The lack of recombination over more than half of the two heteromorphic social chromosomes can be explained by at least one large inversion of around 9 megabases, and this absence of recombination has led to the accumulation of deleterious mutations, including repetitive elements in the non-recombining region of Sb compared with the homologous region of SB. Importantly, most of the genes with demonstrated expression differences between individuals of the two social forms reside in the non-recombining region. These findings highlight how genomic rearrangements can maintain divergent adaptive social phenotypes involving many genes acting together by locally limiting recombination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Wood ants (Formica paralugubris) incorporate large amounts of solidified conifer resin into their nest, which reduces the density of many bacteria and fungi and protects the ants against some detrimental micro-organisms. By inducing an environment unfavourable to pathogens, the presence of resin may allow workers to reduce the use of their immune system. 2. The present study tested the hypothesis that the presence of resin decreases the immune activity of wood ants. Specifically, three components of the humoral immune defences of workers kept in resin-rich and resin-free experimental nests (antibacterial, lytic, and prophenoloxidase activities) were compared. 3. The presence of resin was associated with reduced bacterial and fungal densities in nest material and with a small decrease in worker antibacterial and lytic activities. The prophenoloxidase activity was very low in all workers and was not affected by the presence of resin. 4. These results suggest that collective medication with resin reduces pathogen pressure, which in turn decreases the use of the inducible part of the immune system. More generally, the use of plant secondary compounds might be an efficient and economical way to fight pathogens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Social organisms are exposed to many pathogens, and have evolved various defence mechanisms to limit the cost of parasitism. Here we report the first evidence that ants use plant compounds as a collective mean of defence against microorganisms. The wood ants Formica paralugubris often incorporate large quantities of solidified conifer resin into their nests. By creating resin-free and resin-rich experimental nests, we demonstrate that this resin inhibits the growth of microorganisms in a context mimicking natural conditions. Such a collective medication probably confers major ecological advantages, and may be an unrecognized yet common feature of large, complex and successful societies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Virgin queens of the fire ant,Solenopsis invicta Buren, that were removed from the influence of the inhibitory queen pheromone, dealated more readily in the presence of workers than in their absence. During 72 hours after disinhibition, a significantly greater number of overwintered virgin queens than spring-reared virgin queens dealated when they were isolated, but the numbers that dealated in the presence of workers were very similar. Some sexually immature virgin queens dealated after disinhibition. Virgin dealates were found to be capable of preventing other virgin queens from dealating. The various factors that influence dealation by virgin queens were used to develop a bioassay for the inhibitory queen pheromone ofS. invicta. Lorsque des reines vierges de la fourmi de feu sont soustraites à l'influence de la phéromone inhibitrice produite par la reine, elles perdent leurs ailes plus facilement en présence d'ouvrières qu'en leur absence. Lorsqu'elles sont isolées pendant 72 heures après la levée de l'inhibition, un nombre significativement plus grand de reines vierges ayant hiverné perdent leurs ailes, par rapport aux reines vierges élevées au printemps. Toutefois, les nombres d'individus perdant leurs ailes en présence d'ouvrières sont similaires. Après désinhibition, quelques reines vierges immatures perdent leurs ailes. Les sexués vierges désailés sont capables de prévenir la perte des ailes chez d'autres sexués vierges. Les divers facteurs influençant la déalation chez les reines vierges ont été utilisés afin de développer un essai biologique pour la phéromone inhibitrice produite par la reine deS. invicta.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SUMMARY : Parasites and sociality in ants This thesis investigates the complex relationships between sociality, defences against parasites and the regulation of social structures. We studied how fungal parasites influenced colony organization, collective defences and social immunity in the ant Formica selysi. We first describe the diversity and prevalence of fungal pathogens associated with ant nests. The richness of fungal parasites community may increase the risk of multiple infections and select for a diversification of anti-parasitic defences in ants. Collective defences are powerful means to combat parasites, but can also increase the risk of disease transmission. Here, we showed that allo-grooming (mutual cleaning) was directed towards every returning individuals, be they contaminated or not. This collective behaviour removed conidia more efficiently than self-grooming but did not improve the survival of contaminated individuals. This suggests that allo-grooming may rather protect the group than cure contaminated individuals. It may also permit "social vaccination" if a contact with contaminated ants protects groomers frorn a second fungal exposure. Social transfer of immunity is an emerging theme in insect immunology. Here, we showed that ants in contact with an ant from a different genetic lineage had a higher disease resistance. We also found that naïve ants had a higher resistance after a contact with an immunized ant. This suggests that a transfer of resistance is possible and that "social vaccination" may improve the resistance of the group. However, it remains unclear whether repeated exposure to parasites may also increase the resistance of infected individuals themselves. lmmune memory in invertebrates is still debated. We tested whether immune priming against fungal parasite arose in ants and whether it was strain-specific. We found no evidence of immune priming. Naïve and immunized ants had a similar survival when infected. Together with our previous results, this suggests that ants have evolved efficient collective anti-fungal defences but that these defences aim at protecting the group rather than the contaminated individuals. ln colonies of our study population, there is a strong variation in the number of breeders. This is associated with important changes in life-history traits like demography or queen and worker body size. In the second part of the thesis, we investigated how social structures evolved and were maintained. We showed that queens from monogyne and polygyne colonies were able to found new colonies both alone or in association. We also found that there was no difference between monogyne and polygyne colonies in the acceptance of additional queens. These results suggest that a high plasticity has been maintained in this population, which may permit to adapt rapidly to changing environmental conditions. RESUME : Parasites et socialité chez les fourmis Durant cette thèse, nous avons étudié comment la socialité apporte de nouvelles réponses a des problèmes complexes telle que la défense contre les parasites ou l'organisation de la vie en groupe. Nous avons choisi comme modèle la fourmi Formica selysi et ses champignons pathogènes. Nous avons d'abord montré que la diversité et la prévalence de champignons pathogènes associés aux nids de fourmis étaient très élevées. Cela a pu pousser les fourmis à diversifier le champ de leur défenses anti-parasitaires afin d'éviter les infections multiples, La socialité a en particulier permis l'évolution de défenses collectives qui pourraient être plus efficaces que les défenses individuelles. Nous nous sommes donc intéressés de plus près aux défenses collectives et avons étudié quels en étaient les coûts et les bénéfices pour le groupe et pour ses membres. Nous avons trouvé que les fourmis nettoyaient tous les individus entrant dans la colonie, qu'ils soient contaminés ou non. Cela permettait d'ôter plus de spores que le nettoyage individuel et n'augmentait pas la transmission de maladie. Cependant, le nettoyage mutuel n'augmentait pas non plus la survie des individus contaminés. ll se pourrait donc que ce comportement serve plutôt a éviter une dissémination de la maladie qu'à soigner les individus contaminés. Le nettoyage mutuel pourrait aussi permettre aux individus sains d'avoir un premier contact non-létal avec un parasite et d'être vaccinés contre une future exposition. Cette hypothèse a été soutenue par une expérience dans laquelle nous avons montré que le contact avec une fourmi immunisée permettait d'augmenter la résistance d'individus naïfs. Les fourmis avaient aussi une meilleure résistance lorsqu'elles étaient en contact avec une fourmi provenant d'une autre lignée génétique. Cette "vaccination sociale" pourrait permettre d'une part d'augmenter le nombre d'espèce de parasites contre lesquelles le groupe serait protégé et d'autre part de faire l'économie d'autres défenses individuelles telles que la réponse immunitaire. Nous avons testé si les fourmis étaient elles-mêmes "vaccinées", c'est-à-dire, si elles exprimaient une mémoire immunitaire après un premier contact avec un champignon parasite. Nous n'avons trouvé aucune différence de survie entre les individus naïfs et immunisés ce qui suggère les fourmis favorisent d'autres défenses que la mémoire immunitaire contre les champignons entomopathogènes. Cela suggère également que les comportements coopératifs anti-parasitaires pourraient compléter, voire remplacer les défenses individuelles. La socialité telle qu'elle est pratiquée par les fourmis pose un autre problème de poids qui est celui de savoir combien d'individus se reproduisent. En effet, si les ouvrières sont stériles, le nombre de reines assurant la reproduction peut varier considérablement. Dans la population de E sebrsi étudiée, les colonies monogynes (une reine) co-existent avec des colonies polygynes (plusieurs reines) dans le même habitat. Nous nous sommes demandés si ces structures sociales étaient fixes ou si un changement de l'une à l'autre était possible. Pour cela nous avons comparé la fondation de nouvelles colonies par les jeunes reines issues de colonies monogynes et polygynes. Nous avons également observé si l'acceptation de nouvelles reines était possible dans les deux types de colonies. Nous n'avons trouvé aucune différence entre les deux types de colonies. Cela suggère qu'un changement est possible et que l'évolution des structures sociales est un processus dynamique. Cela pourrait être dû à l'habitat particulièrement changeant dans lequel se trouve notre population qui exigerait d'être capable de s'adapter très rapidement a de nouvelles conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Astract: The aim of this thesis was to investigate how the presence of multiple queens (polygyny) affects social organization in colonies of the ant Formica exsecta. This is important because polygyny results in reduced relatedness among colony members and therefore reflects a potential paradox for altruistic cooperation being explained by inclusive fitness theory. The reason for this is that workers in polygynous colonies rear no longer only their siblings (high inclusive fitness gain) but also more distantly ox even unrelated brood (low or no inclusive fitness gain). All research projects conducted in this thesis are novel and significant contributions to the understanding of the social evolution of insect societies. We used a mixture of experimental and observational methodologies in laboratory and field colonies of F. exsecta to examine four important aspects of social life that are impacted by polygyny. First, we investigated the influence of queen number on colony sex allocation and found that the number of queens present in a colony significantly affects colony sex ratio investment. The data were consistent with the queen-replenishment hypothesis, which is based on the observation that newly mated queens are often recruited back to their parental nest. According to this theory, colonies containing many queens should only produce males due to local resource competition (i.e. related queens compete for common resources), whereas colonies hosting few queens benefit most from producing new queens to ensure colony survival. Second, we examined how reproduction is partitioned among nestmate queens. We detected a novel pattern of reproductive partitioning whereby a high proportion of queens were completely specialized in the production of only a subset of offspring classes produced within a colony, which might translate into great differences in reproductive success between queens. Third, we could demonstrate that F. exsecta workers indiscriminately reared highly related and unrelated brood although such nepotistic behaviour (preferential rearing of relatives) would be predicted by inclusive fitness theory. The absence of nepotism is probably best explained by its negative effects on overall colony efficiency. Finally, we conducted a detailed population genetic analysis, which revealed that the genetic population structure is different for queens and workers. Our data were best explained with queens forming family-based groups (multicolonial population structure), whereas workers from several nests seemed to be grouped into larger unites (unicolonial population structure) with workers moving freely between neighbouring nests. Altogether, the presented work significantly increased our understanding of the complex organization of polygynous social insect colonies and shows how an important life history trait such as queen number affects social organization at various levels. Résumé: Le but de cette thèse était d'étudier comment la présence de plusieurs reines par colonie (polygynie) influence la vie sociale chez la fourmi Formica exsecta. Ce sujet est important parce que la polygynie chez les insectes sociaux présente un passible paradoxe au niveau de la théorie du "fitness inclusive". Ce paradoxe est basé sur le fait que les ouvrières n'élèvent plus uniquement leurs frères et soeurs (gain de "fitness inclusive" maximale), mais également des individus moins ou pas du tout apparentés (gain de "fitness inclusive" réduit ou absent). Tous les projets de recherche présentés au cours de cette thèse apportent une meilleure compréhension et connaissance au niveau de l'organisation des colonies chez les insectes sociaux. Nous avons employé des méthodes d'observation et de laboratoire afin de mettre en évidence des aspects importants de la vie sociale chez les fourmis influencés par la polygynie. Quatre aspects ont été caractérisés : (1) l'influence du nombre de reines sur le sexe ratio produit par la colonie. Nous avons démontré que les colonies contenant beaucoup de reines produisaient rarement des reines tandis que les colonies contenant peu de reines souvent investissaient beaucoup de ressources dans la production des reines. Ces résultats sont en accord avec la "queen-replenishment hypothesis" qui est basé sur l'observation que les nouvelles reines sont recrutées dans la colonie où elles étaient nées. Cette hypothèse postule que la production des reines est défavorable dans les colonies contenant beaucoup de reines, parce que ces reines apparentées, rentrent en compétition pour des ressources communes. Au contraire, la production des reines est favorable dans des colonies contenant peu de reines afin d'assurer la survie de la colonie ; (2) comment les reines dans une colonie répartissent leur reproduction. Nous avons mis en évidence un nouveau pattern de cette répartition où une grande proportion de reines est complètement spécialisée dans la production d'un seul type de couvain ce qui probablement aboutit à des différences significatives entre reines dans le succès reproducteur ; (3) la capacité des ouvrières à discriminer un couvain de soeur d'un couvain non apparenté. Les résultats ont montré que les ouvrières ne font pas de discrimination entre le couvain de soeur et le couvain non apparenté ce qui n'est pas en accord avec la théorie de la "fitness inclusive". Cette absence de discrimination est probablement due à des effets négatifs comme par exemple la diminution de la production du couvain; (4) la structure génétique d'une population de F. exsecta. Nous avons mis en évidence que la structure génétique entre des groupes de reines est significativement différente de la structure génétique entre des groupes d'ouvrières. Les données suggèrent que les reines forment des groupes basés sur une structure familiale tandis que les ouvrières sont groupées dans des unités plus grandes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Insect societies are paramount examples of cooperation, yet they also harbor internal conflicts whose resolution depends on the power of the opponents. The male-haploid, female-diploid sex-determining system of ants causes workers to be more related to sisters than to brothers, whereas queens are equally related to daughters and sons. Workers should thus allocate more resources to females than to males, while queens should favor an equal investment in each sex. Female-biased sex allocation and manipulation of the sex ratio during brood development suggest that workers prevail in many ant species. Here, we show that queens of Formica selysi strongly influenced colony sex allocation by biasing the sex ratio of their eggs. Most colonies specialized in the production of a single sex. Queens in female-specialist colonies laid a high proportion of diploid eggs, whereas queens in male-specialist colonies laid almost exclusively haploid eggs, which constrains worker manipulation. However, the change in sex ratio between the egg and pupae stages suggests that workers eliminated some male brood, and the population sex-investment ratio was between the queens' and workers' equilibria. Altogether, these data provide evidence for an ongoing conflict between queens and workers, with a prominent influence of queens as a result of their control of egg sex ratio.