60 resultados para Antimicrobial compounds
Resumo:
A three-dimensional cell culture system was used as a model to study the influence of low levels of mercury in the developing brain. Aggregating cell cultures of fetal rat telencephalon were treated for 10 days either during an early developmental period (i.e., between days 5 and 15 in vitro) or during a phase of advanced maturation (i.e., between days 25 and 35) with mercury. An inorganic (HgCl2) and an organic mercury compound (monomethylmercury chloride, MeHgCl) were examined. By monitoring changes in cell type-specific enzymes activities, the concentration-dependent toxicity of the compounds was determined. In immature cultures, a general cytotoxicity was observed at 10(-6) M for both mercury compounds. In these cultures, HgCl2 appeared somewhat more toxic than MeHgCl. However, no appreciable demethylation of MeHgCl could be detected, indicating similar toxic potencies for both mercury compounds. In highly differentiated cultures, by contrast, MeHgCl exhibited a higher toxic potency than HgCl2. In addition, at 10(-6) M, MeHgCl showed pronounced neuron-specific toxicity. Below the cytotoxic concentrations, distinct glia-specific reactions could be observed with both mercury compounds. An increase in the immunoreactivity for glial fibrillary acidic protein, typical for gliosis, could be observed at concentrations between 10(-9) M and 10(-7) M in immature cultures, and between 10(-8) M and 3 x 10(-5) M in highly differentiated cultures. A conspicuous increase in the number and clustering of GSI-B4 lectin-binding cells, indicating a microglial response, was found at concentrations between 10(-10) M and 10(-7) M. These development-dependent and cell type-specific effects may reflect the pathogenic potential of long-term exposure to subclinical doses of mercury.
Resumo:
An efficient screening strategy for the identification of potentially interesting low-abundance antifungal natural products in crude extracts that combines both a sensitive bioautography assay and high performance liquid chromatography (HPLC) microfractionation was developed. This method relies on high performance thin layer chromatography (HPTLC) bioautography with a hypersusceptible engineered strain of Candida albicans (DSY2621) for bioactivity detection, followed by the evaluation of wild type strains in standard microdilution antifungal assays. Active extracts were microfractionated by HPLC in 96-well plates, and the fractions were subsequently submitted to the bioassay. This procedure enabled precise localisation of the antifungal compounds directly in the HPLC chromatograms of the crude extracts. HPLC-PDA-mass spectrometry (MS) data obtained in parallel to the HPLC antifungal profiles provided a first chemical screening about the bioactive constituents. Transposition of the HPLC analytical conditions to medium-pressure liquid chromatography (MPLC) allowed the efficient isolation of the active constituents in mg amounts for structure confirmation and more extensive characterisation of their biological activities. The antifungal properties of the isolated natural products were evaluated by their minimum inhibitory concentration (MIC) in a dilution assay against both wild type and engineered strains of C. albicans. The biological activity of the most promising agents was further evaluated in vitro by electron microscopy and in vivo in a Galleria mellonella model of C. albicans infection. The overall procedure represents a rational and comprehensive means of evaluating antifungal activity from various perspectives for the selection of initial hits that can be explored in more in-depth mode-of-action studies. This strategy is illustrated by the identification and bioactivity evaluation of a series of antifungal compounds from the methanolic extract of a Rubiaceae plant, Morinda tomentosa, which was used as a model in these studies.
Resumo:
BACKGROUND: Intravenously administered antimicrobial agents have been the standard choice for the empirical management of fever in patients with cancer and granulocytopenia. If orally administered empirical therapy is as effective as intravenous therapy, it would offer advantages such as improved quality of life and lower cost. METHODS: In a prospective, open-label, multicenter trial, we randomly assigned febrile patients with cancer who had granulocytopenia that was expected to resolve within 10 days to receive empirical therapy with either oral ciprofloxacin (750 mg twice daily) plus amoxicillin-clavulanate (625 mg three times daily) or standard daily doses of intravenous ceftriaxone plus amikacin. All patients were hospitalized until their fever resolved. The primary objective of the study was to determine whether there was equivalence between the regimens, defined as an absolute difference in the rates of success of 10 percent or less. RESULTS: Equivalence was demonstrated at the second interim analysis, and the trial was terminated after the enrollment of 353 patients. In the analysis of the 312 patients who were treated according to the protocol and who could be evaluated, treatment was successful in 86 percent of the patients in the oral-therapy group (95 percent confidence interval, 80 to 91 percent) and 84 percent of those in the intravenous-therapy group (95 percent confidence interval, 78 to 90 percent; P=0.02). The results were similar in the intention-to-treat analysis (80 percent and 77 percent, respectively; P=0.03), as were the duration of fever, the time to a change in the regimen, the reasons for such a change, the duration of therapy, and survival. The types of adverse events differed slightly between the groups but were similar in frequency. CONCLUSIONS: In low-risk patients with cancer who have fever and granulocytopenia, oral therapy with ciprofloxacin plus amoxicillin-clavulanate is as effective as intravenous therapy.
Resumo:
Pseudomonas fluorescens CHA0 is an effective biocontrol agent of root diseases caused by fungal pathogens. The strain produces the antibiotics 2,4-diacetylphloroglucinol (DAPG) and pyoluteorin (PLT) that make essential contributions to pathogen suppression. This study focused on the role of the sigma factor RpoN (sigma54) in regulation of antibiotic production and biocontrol activity in P. fluorescens. An rpoN in-frame-deletion mutant of CHAO had a delayed growth, was impaired in the utilization of several carbon and nitrogen sources, and was more sensitive to salt stress. The rpoN mutant was defective for flagella and displayed drastically reduced swimming and swarming motilities. Interestingly, the rpoN mutant showed a severalfold enhanced production of DAPG and expression of the biosynthetic gene phlA compared with the wild type and the mutant complemented with monocopy rpoN+. By contrast, loss of RpoN function resulted in markedly lowered PLT production and plt gene expression, suggesting that RpoN controls the balance of the two antibiotics in strain CHA0. In natural soil microcosms, the rpoN mutant was less effective in protecting cucumber from a root rot caused by Pythium ultimum. Remarkably, the mutant was not significantly impaired in its root colonization capacity, even at early stages of root infection by Pythium spp. Taken together, our results establish RpoN for the first time as a major regulator of biocontrol activity in Pseudomonas fluorescens.
Resumo:
The efficacy and safety of anti-infective treatments are associated with the drug blood concentration profile, which is directly correlated with a dosing adjustment to the individual patient's condition. Dosing adjustments to the renal function recommended in reference books are often imprecise and infrequently applied in clinical practice. The recent generalisation of the KDOQI (Kidney Disease Outcome Quality Initiative) staging of chronically impaired renal function represents an opportunity to review and refine the dosing recommendations in patients with renal insufficiency. The literature has been reviewed and compared to a predictive model of the fraction of drug cleared by the kidney based on the Dettli's principle. Revised drug dosing recommendations integrating these predictive parameters are proposed.
Resumo:
We have investigated the impacts of 63 different low-molecular-weight compounds, most of them plant derived, on the in vitro expression of two antifungal biosynthetic genes by the plant-protecting rhizobacterium Pseudomonas fluorescens CHA0. The majority of the compounds tested affected the expression of one or both antifungal genes. This suggests that biocontrol activity in plant-beneficial pseudomonads is modulated by plant-bacterium signaling.
Resumo:
Pseudomonas knackmussii B13 was the first strain to be isolated in 1974 that could degrade chlorinated aromatic hydrocarbons. This discovery was the prologue for subsequent characterization of numerous bacterial metabolic pathways, for genetic and biochemical studies, and which spurred ideas for pollutant bioremediation. In this study, we determined the complete genome sequence of B13 using next generation sequencing technologies and optical mapping. Genome annotation indicated that B13 has a variety of metabolic pathways for degrading monoaromatic hydrocarbons including chlorobenzoate, aminophenol, anthranilate and hydroxyquinol, but not polyaromatic compounds. Comparative genome analysis revealed that B13 is closest to Pseudomonas denitrificans and Pseudomonas aeruginosa. The B13 genome contains at least eight genomic islands [prophages and integrative conjugative elements (ICEs)], which were absent in closely related pseudomonads. We confirm that two ICEs are identical copies of the 103 kb self-transmissible element ICEclc that carries the genes for chlorocatechol metabolism. Comparison of ICEclc showed that it is composed of a variable and a 'core' region, which is very conserved among proteobacterial genomes, suggesting a widely distributed family of so far uncharacterized ICE. Resequencing of two spontaneous B13 mutants revealed a number of single nucleotide substitutions, as well as excision of a large 220 kb region and a prophage that drastically change the host metabolic capacity and survivability.
Resumo:
Antibiotics are widely used in critical care and adequate empirical treatments has a significant impact on the outcome of many patients. Most nosocomial infections may be due to multidrug-resistant pathogens and requires empirical borad spectrum coverage before identification of the etiologic agents. This is associated with overuse of antibiotics which contributes to the further increase in multidrug-resistances. In this context, new strategies targeted at antibiotic control, such as guidelines and de-escalation are needed to control this evolution.
Resumo:
Anthracene derivatives of ruthenium(II) arene compounds with 1,3,5-triaza-7-phosphatricyclo[3.3.1.1]decane (pta) or a sugar phosphite ligand, viz., 3,5,6-bicyclophosphite-1,2-O-isopropylidene-α-d-glucofuranoside, were prepared in order to evaluate their anticancer properties compared to the parent compounds and to use them as models for intracellular visualization by fluorescence microscopy. Similar IC(50) values were obtained in cell proliferation assays, and similar levels of uptake and accumulation were also established. The X-ray structure of [{Ru(η(6)-C(6)H(5)CH(2)NHCO-anthracene)Cl(2)(pta)] is also reported.
Resumo:
Pseudomonas knackmussii B13 was the first strain to be isolated in 1974 that could degrade chlorinated aromatic hydrocarbons. This discovery was the prologue for subsequent characterization of numerous bacterial metabolic pathways, for genetic and biochemical studies, and which spurred ideas for pollutant bioremediation. In this study, we determined the complete genome sequence of B13 using next generation sequencing technologies and optical mapping. Genome annotation indicated that B13 has a variety of metabolic pathways for degrading monoaromatic hydrocarbons including chlorobenzoate, aminophenol, anthranilate and hydroxyquinol, but not polyaromatic compounds. Comparative genome analysis revealed that B13 is closest to Pseudomonas denitrificans and Pseudomonas aeruginosa. The B13 genome contains at least eight genomic islands [prophages and integrative conjugative elements (ICEs)], which were absent in closely related pseudomonads. We confirm that two ICEs are identical copies of the 103 kb self-transmissible element ICEclc that carries the genes for chlorocatechol metabolism. Comparison of ICEclc showed that it is composed of a variable and a 'core' region, which is very conserved among proteobacterial genomes, suggesting a widely distributed family of so far uncharacterized ICE. Resequencing of two spontaneous B13 mutants revealed a number of single nucleotide substitutions, as well as excision of a large 220 kb region and a prophage that drastically change the host metabolic capacity and survivability.
Resumo:
One aim of this study is to determine the impact of water velocity on the uptake of indicator polychlorinated biphenyls (iPCBs) by silicone rubber (SR) and low-density polyethylene (LDPE) passive samplers. A second aim is to assess the efficiency of performance reference compounds (PRCs) to correct for the impact of water velocity. SR and LDPE samplers were spiked with 11 or 12 PRCs and exposed for 6 weeks to four different velocities (in the range of 1.6 to 37.7 cm s−1) in river-like flow conditions using a channel system supplied with river water. A relationship between velocity and the uptakewas found for each iPCB and enables to determine expected changes in the uptake due to velocity variations. For both samplers, velocity increases from 2 to 10 cm s−1, 30 cm s−1 (interpolated data) and 100 cm s−1 (extrapolated data) lead to increases of the uptake which do not exceed a factor of 2, 3 and 4.5, respectively. Results also showed that the influence of velocity decreased with increasing the octanol-water coefficient partition (log Kow) of iPCBs when SR is used whereas the opposite effect was observed for LDPE. Time-weighted average (TWA) concentrations of iPCBs in water were calculated from iPCB uptake and PRC release. These calculations were performed using either a single PRC or all the PRCs. The efficiency of PRCs to correct the impact of velocity was assessed by comparing the TWA concentrations obtained at the four tested velocities. For SR, a good agreement was found among the four TWA concentrations with both methods (average RSD b 10%). Also for LDPE, PRCs offered a good correction of the impact of water velocity (average RSD of about 10 to 20%). These results contribute to the process of acceptance of passive sampling in routine regulatory monitoring programs.
Resumo:
Double-stranded DNA (dsDNA) can trigger the production of type I interferon (IFN) in plasmacytoid dendritic cells (pDCs) by binding to endosomal Toll-like receptor-9 (TLR9; refs , , , , ). It is also known that the formation of DNA-antimicrobial peptide complexes can lead to autoimmune diseases via amplification of pDC activation. Here, by combining X-ray scattering, computer simulations, microscopy and measurements of pDC IFN production, we demonstrate that a broad range of antimicrobial peptides and other cationic molecules cause similar effects, and elucidate the criteria for amplification. TLR9 activation depends on both the inter-DNA spacing and the multiplicity of parallel DNA ligands in the self-assembled liquid-crystalline complex. Complexes with a grill-like arrangement of DNA at the optimum spacing can interlock with multiple TLR9 like a zipper, leading to multivalent electrostatic interactions that drastically amplify binding and thereby the immune response. Our results suggest that TLR9 activation and thus TLR9-mediated immune responses can be modulated deterministically.
Resumo:
A headspace-gas chromatography-tandem mass spectrometry (HS-GC-MS/MS) method for the trace measurement of perfluorocarbon compounds (PFCs) in blood was developed. Due to oxygen carrying capabilities of PFCs, application to doping and sports misuse is speculated. This study was therefore extended to perform validation methods for F-tert-butylcyclohexane (Oxycyte(®)), perfluoro(methyldecalin) (PFMD) and perfluorodecalin (PFD). The limit of detection of these compounds was established and found to be 1.2µg/mL blood for F-tert-butylcyclohexane, 4.9µg/mL blood for PFMD and 9.6µg/mL blood for PFD. The limit of quantification was assumed to be 12µg/mL blood (F-tert-butylcyclohexane), 48µg/mL blood (PFMD) and 96µg/mL blood (PFD). HS-GC-MS/MS technique allows detection from 1000 to 10,000 times lower than the estimated required dose to ensure a biological effect for the investigated PFCs. Thus, this technique could be used to identify a PFC misuse several hours, maybe days, after the injection or the sporting event. Clinical trials with those compounds are still required to evaluate the validation parameters with the calculated estimations.
Resumo:
Les bactéries du genre Pseudomonas ont la capacité étonnante de s'adapter à différents habitats et d'y survivre, ce qui leur a permis de conquérir un large éventail de niches écologiques et d'interagir avec différents organismes hôte. Les espèces du groupe Pseudomonas fluorescens peuvent être facilement isolées de la rhizosphère et sont communément connues comme des Pseudomonas bénéfiques pour les plantes. Elles sont capables d'induire la résistance systémique des plantes, d'induire leur croissance et de contrer des phytopathogènes du sol. Un sous-groupe de ces Pseudomonas a de plus développé la capacité d'infecter et de tuer certaines espèces d'insectes. Approfondir les connaissances sur l'interaction de ces bactéries avec les insectes pourraient conduire au développement de nouveaux biopesticides pour la protection des cultures. Le but de cette thèse est donc de mieux comprendre la base moléculaire, l'évolution et la régulation de la pathogénicité des Pseudomonas plante-bénéfiques envers les insectes. Plus spécifiquement, ce travail a été orienté sur l'étude de la production de la toxine insecticide appelée Fit et sur l'indentification d'autres facteurs de virulence participant à la toxicité de la bactérie envers les insectes. Dans la première partie de ce travail, la régulation de la production de la toxine Fit a été évaluée par microscopie à épifluorescence en utilisant des souches rapportrices de Pseudomonas protegens CHA0 qui expriment la toxine insecticide fusionnée à une protéine fluorescente rouge, au site natif du gène de la toxine. Celle-ci a été détectée uniquement dans l'hémolymphe des insectes et pas sur les racines des plantes, ni dans les milieux de laboratoire standards, indiquant une production dépendante de l'hôte. L'activation de la production de la toxine est contrôlée par trois protéines régulatrices dont l'histidine kinase FitF, essentielle pour un contrôle précis de l'expression et possédant un domaine "senseur" similaire à celui de la kinase DctB qui régule l'absorption de carbone chez les Protéobactéries. Il est donc probable que, durant l'évolution de FitF, un réarrangement de ce domaine "senseur" largement répandu ait contribué à une production hôte-spécifique de la toxine. Les résultats de cette étude suggèrent aussi que l'expression de la toxine Fit est plutôt réprimée en présence de composés dérivés des plantes qu'induite par la perception d'un signal d'insecte spécifique. Dans la deuxième partie de ce travail, des souches mutantes ciblant des facteurs de virulence importants identifiés dans des pathogènes connus ont été générées, dans le but d'identifier ceux avec une virulence envers les insectes atténuée. Les résultats ont suggéré que l'antigène O du lipopolysaccharide (LPS) et le système régulateur à deux composantes PhoP/PhoQ contribuent significativement à la virulence de P. protegens CHA0. La base génétique de la biosynthèse de l'antigène O dans les Pseudomonas plante-bénéfiques et avec une activité insecticide a été élucidée et a révélé des différences considérables entre les lignées suite à des pertes de gènes ou des acquisitions de gènes par transfert horizontal durant l'évolution de certaines souches. Les chaînes latérales du LPS ont été montrées comme vitales pour une infection des insectes réussie par la souche CHA0, après ingestion ou injection. Les Pseudomonas plante-bénéfiques, avec une activité insecticide sont naturellement résistants à la polymyxine B, un peptide antimicrobien modèle. La protection contre ce composé antimicrobien particulier dépend de la présence de l'antigène O et de la modification du lipide A, une partie du LPS, avec du 4-aminoarabinose. Comme les peptides antimicrobiens cationiques jouent un rôle important dans le système immunitaire des insectes, l'antigène O pourrait être important chez les Pseudomonas insecticides pour surmonter les mécanismes de défense de l'hôte. Le système PhoP/PhoQ, connu pour contrôler les modifications du lipide A chez plusieurs bactéries pathogènes, a été identifié chez Pseudomonas chlororaphis PCL1391 et P. protegens CHA0. Pour l'instant, il n'y a pas d'évidence que des modifications du lipide A contribuent à la pathogénicité de cette bactérie envers les insectes. Cependant, le senseur-kinase PhoQ est requis pour une virulence optimale de la souche CHA0, ce qui suggère qu'il régule aussi l'expression des facteurs de virulence de cette bactérie. Les découvertes de cette thèse démontrent que certains Pseudomonas associés aux plantes sont de véritables pathogènes d'insectes et donnent quelques indices sur l'évolution de ces microbes pour survivre dans l'insecte-hôte et éventuellement le tuer. Les résultats suggèrent également qu'une recherche plus approfondie est nécessaire pour comprendre comment ces bactéries sont capables de contourner ou surmonter la réponse immunitaire de l'hôte et de briser les barrières physiques pour envahir l'insecte lors d'une infection orale. Pour cela, les futures études ne devraient pas uniquement se concentrer sur le côté bactérien de l'interaction hôte-microbe, mais aussi étudier l'infection du point de vue de l'hôte. Les connaissances gagnées sur la pathogénicité envers les insectes des Pseudomonas plante-bénéfiques donnent un espoir pour une future application en agriculture, pour protéger les plantes, non seulement contre les maladies, mais aussi contre les insectes ravageurs. -- Pseudomonas bacteria have the astonishing ability to survive within and adapt to different habitats, which has allowed them to conquer a wide range of ecological niches and to interact with different host organisms. Species of the Pseudomonas fluorescens group can readily be isolated from plant roots and are commonly known as plant-beneficial pseudomonads. They are capable of promoting plant growth, inducing systemic resistance in the plant host and antagonizing soil-borne phytopathogens. A defined subgroup of these pseudomonads evolved in addition the ability to infect and kill certain insect species. Profound knowledge about the interaction of these particular bacteria with insects could lead to the development of novel biopesticides for crop protection. This thesis thus aimed at a better understanding of the molecular basis, evolution and regulation of insect pathogenicity in plant-beneficial pseudomonads. More specifically, it was outlined to investigate the production of an insecticidal toxin termed Fit and to identify additional factors contributing to the entomopathogenicity of the bacteria. In the first part of this work, the regulation of Fit toxin production was probed by epifluorescence microscopy using reporter strains of Pseudomonas protegens CHAO that express a fusion between the insecticidal toxin and a red fluorescent protein in place of the native toxin gene. The bacterium was found to express its insecticidal toxin only in insect hemolymph but not on plant roots or in common laboratory media. The host-dependent activation of Fit toxin production is controlled by three local regulatory proteins. The histidine kinase of this regulatory system, FitF, is essential for the tight control of toxin expression and shares a sensing domain with DctB, a sensor kinase regulating carbon uptake in Proteobacteria. It is therefore likely that shuffling of a ubiquitous sensor domain during the evolution of FitF contributed to host- specific production of the Fit toxin. Findings of this study additionally suggest that host-specific expression of the Fit toxin is mainly achieved by repression in the presence of plant-derived compounds rather than by induction upon perceiving an insect-specific signal molecule. In the second part of this thesis, mutant strains were generated that lack factors previously shown to be important for virulence in prominent pathogens. A screening for attenuation in insect virulence suggested that lipopolysaccharide (LPS) O-antigen and the PhoP-PhoQ two-component regulatory system significantly contribute to virulence of P. protegens CHAO. The genetic basis of O-antigen biosynthesis in plant-beneficial pseudomonads displaying insect pathogenicity was elucidated and revealed extensive differences between lineages due to reduction and horizontal acquisition of gene clusters during the evolution of several strains. Specific 0 side chains of LPS were found to be vital for strain CHAO to successfully infect insects by ingestion or upon injection. Insecticidal pseudomonads with plant-beneficial properties were observed to be naturally resistant to polymyxin B, a model antimicrobial peptide. Protection against this particular antimicrobial compound was dependent on the presence of O-antigen and modification of the lipid A portion of LPS with 4-aminoarabinose. Since cationic antimicrobial peptides play a major role in the immune system of insects, O-antigenic polysaccharides could be important for insecticidal pseudomonads to overcome host defense mechanisms. The PhoP-PhoQ system, which is well-known to control lipid A modifications in several pathogenic bacteria, was identified in Pseudomonas chlororaphis PCL1391 and P. protegens CHAO. No evidence was found so far that lipid A modifications contribute to insect pathogenicity in this bacterium. However, the sensor kinase PhoQ was required for full virulence of strain CHAO suggesting that it additionally regulates the expression of virulence factors in this bacterium. The findings of this thesis demonstrate that certain plant-associated pseudomonads are true insect pathogens and give some insights into how these microbes evolved to survive within and eventually kill the insect host. Results however also point out that more in-depth research is needed to know how exactly these fascinating bacteria manage to bypass or overcome host immune responses and to breach physical barriers to invade insects upon oral infection. To achieve this, future studies should not only focus on the bacterial side of the microbe-host interactions but also investigate the infection from a host-oriented view. The knowledge gained about the entomopathogenicity of plant-beneficial pseudomonads gives hope for their future application in agriculture to protect plants not only against plant diseases but also against insect pests.