170 resultados para Angiotensin receptor subtype


Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVES: We have reported previously that 80 mg valsartan and 50 mg losartan provide less receptor blockade than 150 mg irbesartan in normotensive subjects. In this study we investigated the importance of drug dosing in mediating these differences by comparing the AT(1)-receptor blockade induced by 3 doses of valsartan with that obtained with 3 other antagonists at given doses. METHODS: Valsartan (80, 160, and 320 mg), 50 mg losartan, 150 mg irbesartan, and 8 mg candesartan were administered to 24 healthy subjects in a randomized, open-label, 3-period crossover study. All doses were given once daily for 8 days. The angiotensin II receptor blockade was assessed with two techniques, the reactive rise in plasma renin activity and an in vitro radioreceptor binding assay that quantified the displacement of angiotensin II by the blocking agents. Measurements were obtained before and 4 and 24 hours after drug intake on days 1 and 8. RESULTS: At 4 and 24 hours, valsartan induced a dose-dependent "blockade" of AT(1) receptors. Compared with other antagonists, 80 mg valsartan and 50 mg losartan had a comparable profile. The 160-mg and 320-mg doses of valsartan blocked AT(1) receptors at 4 hours by 80%, which was similar to the effect of 150 mg irbesartan. At trough, however, the valsartan-induced blockade was slightly less than that obtained with irbesartan. With use of plasma renin activity as a marker of receptor blockade, on day 8, 160 mg valsartan was equivalent to 150 mg irbesartan and 8 mg candesartan. CONCLUSIONS: These results show that the differences in angiotensin II receptor blockade observed with the various AT(1) antagonists are explained mainly by differences in dosing. When 160-mg or 320-mg doses were investigated, the effects of valsartan hardly differed from those obtained with recommended doses of irbesartan and candesartan.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVE: The goal of this study was to investigate whether angiotensin II receptor blockers (ARBs) induce a comparable blockade of AT1 receptors in the vasculature and in the kidney when the renin-angiotensin system is activated by a thiazide diuretic. METHOD: Thirty individuals participated in this randomized, controlled, single-blind study. The blood pressure and renal hemodynamic and tubular responses to a 1-h infusion of exogenous angiotensin II (Ang II 3 ng/kg per min) were investigated before and 24 h after a 7-day administration of either irbesartan 300 mg alone or in association with 12.5 or 25 mg hydrochlorothiazide (HCTZ). Irbesartan 300/25 mg was also compared with losartan 100 mg, valsartan 160 mg, and olmesartan 20 mg all in association with 25 mg HCTZ. Each participant received two treatments with a 1-week washout period between treatments. RESULTS: The blood pressure response to Ang II was blocked by more than 90% with irbesartan alone or in association with HCTZ and with olmesartan/HCTZ and by nearly 60% with valsartan/HCTZ and losartan/HCTZ (P < 0.05). In the kidney, Ang II reduced renal plasma flow by 36% at baseline (P < 0.001). Irbesartan +/- HCTZ and olmesartan/HCTZ blocked the renal hemodynamic response to Ang II nearly completely, whereas valsartan/HCTZ and losartan/HCTZ only blunted this effect by 34 and 45%, respectively. At the tubular level, Ang II significantly reduced urinary volume (-84%) and urinary sodium excretion (-65%) (P < 0.01). These tubular effects of Ang II were only partially blunted by the administration of ARBs. CONCLUSION: These data demonstrate that ARBs prescribed at their recommended doses do not block renal tubular AT1 receptors as effectively as vascular receptors do. This observation may account for the need of higher doses of ARB for renal protection. Moreover, our results confirm that there are significant differences between ARBs in their capacity to induce a sustained vascular and tubular blockade of Ang II receptors.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Losartan is an orally active angiotensin II antangonist that selectively blocks effects mediated by the stimulation of the AT1 subtype of the angiotensin II receptor. This agent, at doses of 50-150mg/day, is as effective at lowering blood pressure as chronic angiotensin converting enzyme (ACE) inhibitors. Losartan is generally well tolerated and has an incidence of adverse effects very similar, in double-blind controlled trials, to that of placebo. It does not cause coughing, the most common side-effect of the ACE inhibitors, most probably because angiotensin II antagonism has no impact on ACE, an enzyme known to process bradykinin and other cough-inducing peptides. Losartan is a promising antihypertensive agent with the potential to become a first-line option for the treatment of patients with high blood pressure.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Exercise is known to reduce cardiovascular risk. However, its role on atherosclerotic plaque stabilization is unknown. Apolipoprotein E(-/-) mice with vulnerable (2-kidney, 1-clip: angiotensin [Ang] II-dependent hypertension model) or stable atherosclerotic plaques (1-kidney, 1-clip: Ang II-independent hypertension model and normotensive shams) were used for experiments. Mice swam regularly for 5 weeks and were compared with sedentary controls. Exercised 2-kidney, 1-clip mice developed significantly more stable plaques (thinner fibrous cap, decreased media degeneration, layering, macrophage content, and increased smooth muscle cells) than sedentary controls. Exercise did not affect blood pressure. Conversely, swimming significantly reduced aortic Ang II type 1 receptor mRNA levels, whereas Ang II type 2 receptor expression remained unaffected. Sympathetic tone also significantly diminished in exercised 2-kidney, 1-clip mice compared with sedentary ones; renin and aldosterone levels tended to increase. Ang II type 1 downregulation was not accompanied by improved endothelial function, and no difference in balance among T-helper 1, T-helper 2, and T regulatory cells was observed between sedentary and exercised mice. These results show for the first time, in a mouse model of Ang II-mediated vulnerable plaques, that swimming prevents atherosclerosis progression and plaque vulnerability. This benefit is likely mediated by downregulating aortic Ang II type 1 receptor expression independent from any hemodynamic change. Ang II type 1 downregulation may protect the vessel wall from the Ang II proatherogenic effects. Moreover, data presented herein further emphasize the pivotal and blood pressure-independent role of Ang II in atherogenesis.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An in vitro angiotensin II (AngII) receptor-binding assay was developed to monitor the degree of receptor blockade in standardized conditions. This in vitro method was validated by comparing its results with those obtained in vivo with the injection of exogenous AngII and the measurement of the AngII-induced changes in systolic blood pressure. For this purpose, 12 normotensive subjects were enrolled in a double-blind, four-way cross-over study comparing the AngII receptor blockade induced by a single oral dose of losartan (50 mg), valsartan (80 mg), irbesartan (150 mg), and placebo. A significant linear relationship between the two methods was found (r = 0.723, n = 191, P<.001). However, there exists a wide scatter of the in vivo data in the absence of active AngII receptor blockade. Thus, the relationship between the two methods is markedly improved (r = 0.87, n = 47, P<.001) when only measurements done 4 h after administration of the drugs are considered (maximal antagonist activity observed in vivo) suggesting that the two methods are equally effective in assessing the degree of AT-1 receptor blockade, but with a greatly reduced variability in the in vitro assay. In addition, the pharmacokinetic/pharmacodynamic analysis performed with the three antagonists suggest that the AT-1 receptor-binding assay works as a bioassay that integrates the antagonistic property of all active drug components of the plasma. This standardized in vitro-binding assay represents a simple, reproducible, and precise tool to characterize the pharmacodynamic profile of AngII receptor antagonists in humans.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The purpose of this study was to assess the inhibitory effect of TCV-116, an orally active angiotensin II (Ang II) antagonist, on the pressor action of exogenous Ang II and to determine the compensatory rise in plasma renin activity and Ang II levels. Twenty-three male volunteers were treated for 8 days in a double-blind fashion with either placebo or TCV-116 (1, 2, or 4 mg PO daily) and challenged on the first, fourth, and eighth days with repeated bolus injections of Ang II. An additional 4 subjects received 8 mg PO daily in a single-blind fashion. The inhibitory effect on the systolic blood pressure response to Ang II was long lasting and clearly dose related. Six hours after 4 mg TCV-116, the systolic blood pressure response to a given dose of Ang II was reduced to 40 +/- 4% and 35 +/- 8% of baseline value on days 1 and 8, respectively. TCV-116 induced a dose-related increase in plasma renin activity and Ang II levels that was more pronounced on the eighth than on the first day of drug administration. Despite this compensatory mechanism, the relation between the time-integrated systolic blood pressure response to Ang II and the time-integrated CV-11974 levels, the active metabolite of TCV-116, was not different between days 1 and 8. In conclusion, TCV-116 appears to be a well-tolerated, orally active, potent, and long-lasting antagonist of Ang II in men.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Use of angiotensin (Ang) II AT1 receptor antagonists for treatment of hypertension is rapidly increasing, yet direct comparisons of the relative efficacy of antagonists to block the renin-angiotensin system in humans are lacking. In this study, the Ang II receptor blockade induced by the recommended starting dose of 3 antagonists was evaluated in normotensive subjects in a double-blind, placebo-controlled, randomized, 4-way crossover study. At 1-week intervals, 12 subjects received a single dose of losartan (50 mg), valsartan (80 mg), irbesartan (150 mg), or placebo. Blockade of the renin-angiotensin system was assessed before and 4, 24, and 30 hours after drug intake by 3 independent methods: inhibition of the blood pressure response to exogenous Ang II, in vitro Ang II receptor assay, and reactive changes in plasma Ang II levels. At 4 hours, losartan blocked 43% of the Ang II-induced systolic blood pressure increase; valsartan, 51%; and irbesartan, 88% (P<0.01 between drugs). The effect of each drug declined with time. At 24 hours, a residual effect was found with all 3 drugs, but at 30 hours, only irbesartan induced a marked, significant blockade versus placebo. Similar results were obtained when Ang II receptor blockade was assessed with an in vitro receptor assay and by the reactive rise in plasma Ang II levels. This study thus demonstrates that the first administration of the recommended starting dose of irbesartan induces a greater and longer lasting Ang II receptor blockade than that of valsartan and losartan in normotensive subjects.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The pharmacokinetic and pharmacodynamic properties of nonpeptide angiotensin antagonists in humans are reviewed in this paper. Representatives of this new therapeutic class share common features: lipophilia, intermediate bioavailability, high affinity for plasma proteins and liver metabolism; some have active metabolites. Angiotensin II antagonists block the blood pressure response to exogenous angiotensin II in healthy volunteers, decrease baseline blood pressure in both normal and hypertensive patients, produce a marked rise in plasma renin activity and endogenous angiotensin II and increase renal blood flow without altering glomerular filtration rate. These effects are dose-dependent, but their time course varies between the drugs owing to pharmacokinetic and pharmacodynamic differences. Additionally, the extent of blood pressure reduction is dependent on physiological factors such as sodium and water balance. The characterisation of their pharmacokinetic-pharmacodynamic relationships deserves further refinement for designing optimal therapeutic regimens and proposing dosage adaptations in specific conditions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The acute renal tubular effects of two pharmacologically distinct angiotensin II receptor antagonists have been evaluated in normotensive volunteers on various salt diets. In the first study, the renal response to a single oral dose of losartan (100 mg) was assessed in subjects on a low (50 mmol Na/d) and on a high (200 mmol Na/d) salt intake. In a second protocol, the renal effects of 50 mg irbesartan were investigated in subjects receiving a 100 mmol Na/d diet. Both angiotensin II antagonists induced a significant increase in urinary sodium excretion. With losartan, a modest, transient increase in urinary potassium and a significant increase in uric acid excretion were found. In contrast, no change in potassium and uric acid excretions were observed with irbesartan, suggesting that the effects of losartan on potassium and uric acid are due to the intrinsic pharmacologic properties of losartan rather than to the specific blockade of renal angiotensin II receptors. Assessment of segmental sodium reabsorption using lithium as a marker of proximal tubular reabsorption demonstrated a decreased distal reabsorption of sodium with both antagonists. A direct proximal tubular natriuretic effect of the angiotensin II antagonist could be demonstrated only with irbesartan. This apparent discrepancy allowed us to reveal the importance of acute water loading as a possible confounding factor in renal studies. The results of the present analysis show that acute water loading per se may enhance renal sodium excretion and hence modify the level of activity of the renin-angiotensin system expected from a given sodium diet. Since acute water loading is a common practice in clinical renal studies, this confounding factor should be taken into account when investigating the renal effects of vasoactive systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Camurati-Engelmann disease is characterized by hyperostosis of the long bones and the skull, muscle atrophy, severe limb pain, and progressive joint contractures in some patients. It is caused by heterozygous mutations in the transforming growth factor β1 (TGFβ1) believed to result in improper folding of the latency-associated peptide domain of TGFβ1 and thus in increased or deregulated bioactivity. Losartan, an angiotensin II type 1 receptor antagonist, has been found to downregulate the expression of TGFβ type 1 and 2 receptors. Clinical trials with losartan have shown a benefit in Marfan syndrome, while trials are underway for Duchenne muscular dystrophy and other myopathies associated with TGFβ1 signaling. We hypothesized that due to its anti-TGFβ1 activity, losartan might be beneficial in Camurati-Engelmann disease. This report concerns a boy who presented at age 13 years with severe limb pain and difficulty in walking. Clinical and radiographic evaluation results were compatible with Camurati-Engelmann disease and the diagnosis was confirmed by mutation analysis (c.652C > T [p.Arg218Cys]). The boy underwent an experimental treatment with losartan at a dosage of 50 mg/day, orally. During the treatment period of 18 months, the intensity and frequency of limb pain decreased significantly (as shown by a pain diary), and muscle strength improved, allowing the boy to resume walking and climbing stairs. No obvious side effects were observed. We cautiously conclude that TGFβ1 inhibition with losartan deserves further evaluation in the clinical management of Camurati-Engelmann disease.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Rapport de synthese :Comparaison des effets vasculaires et tubulaires rénaux de plusieurs antagonistes des récepteurs de |'angiotensine II en combinaison avec un diurétique thiazidique chez l'humainObjectif : Le but de ce travail était d'investiguer si les antagonistes des récepteurs AT1 de l'angiotensine II (ARA2) entraînent un blocage équivalent des récepteurs au niveau vasculaire et au niveau rénal, en particulier lorsque le système rénine- angiotensine est stimulé par l'administration d'un diurétique thiazidique. Méthode : trente volontaires masculins en bonne santé ont participé à cette étude randomisée, contrôlée, en simple insu. Nous avons mesuré les variations de pression artérielle, d'hémodynamique rénale ainsi que la réponse tubulaire rénale à une perfusion d'angiotensine II 3ng/kg/min administrée sur 1 heure. Ceci avant traitement puis après sept jours d'administration, 24 heures après la dernière dose de médicament. Nous avons comparé l'irbésartan 300 mg seul ou en association avec 12.5 ou 25 mg d'hydrochlorothiazide. (irbésartan 300/12.5 ; irbésartan 300/25). Nous avons également comparé les effets de l'irbésartan 300/25 au losartan 100 mg, au valsartan 160 mg ainsi qu'à l'olmésartan 20 mg, tous administrés avec 25 mg d'hydrochlorothiazide. Chaque participant a été randomisé pour recevoir 2 traitements de 7 jours espacés d'une période d'une semaine sans traitement. Résultats: La réponse de la pression artérielle à |'angiotensine II exogène était bloquée >90% avec l'irbésartan 300 mg seul ou en association avec le diurétique. Il en était de même avec l'olmésartan 20/25. Par contre le blocage n'était que de 60% environ dans les groupes valsartan 160/25 et losartan 100/25. Au niveau rénal, |'angiotensine II exogène réduisait le flux plasmatique rénal de 36% en pré- traitement. Dans les groupes recevant l'irbésartan 300 mg et l'olmésartan 20 mg associés à l'hydrochlorothiazide 25 mg, la vasoconstriction rénale était bloquée presque entièrement alors qu'el|e ne |'était que partiellement avec le valsartan 160/25 et le losartan 100/25 (34 et 45%, respectivement). En pré-traitement, au niveau tubulaire, l'angiotensine II exogène réduisait le volume urinaire de 84% et l'excrétion urinaire de sodium de 65 %. Les effets tubulaires n'étaient que partiellement bloqués par l'administration d'ARA2. Conclusion: Ces résultats démontrent que les ARA; aux doses maximales recommandées ne bloquent pas aussi efficacement les récepteurs ATI au niveau tubulaire qu'au niveau vasculaire. Cette observation pourrait constituer une justification à l'hypothèse selon laquelle des doses plus importantes d'ARA2 seraient nécessaires afin d'obtenir une meilleure protection d'organe. De plus, nos résultats confirment qu'i| y a d'importantes différences entre les ARA2, relatives à leur capacité d'induire un blocage prolongé sur 24 heures des récepteurs AT1 au niveau vasculaire et tubulaire.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

INTRODUCTION: The evaluation of a new drug in normotensive volunteers provides important pharmacodynamic and pharmacokinetic information as long as the compound has a specific mechanism of action which can be evaluated in healthy subjects as well as in patients. The purpose of the present paper is to discuss the results that have been obtained in normal volunteers with the specific angiotensin II receptor antagonist, losartan potassium. DOSE-FINDING: Over the last few years, studies in normotensive subjects have demonstrated that the minimal dose of losartan that produces maximal efficacy is 40-80 mg. Losartan has a long duration of action and its ability to produce a sustained blockade of the renin-angiotensin system is due almost exclusively to the active metabolite E3174. HORMONAL EFFECTS: Angiotensin II receptor blockade with losartan induces an expected increase in plasma renin activity and plasma angiotensin II levels. A decrease in plasma aldosterone levels has been found only with a high dose of losartan (120 mg). RENAL AND BLOOD PRESSURE EFFECTS: In normotensive subjects, losartan has little or no effect on blood pressure unless the subjects are markedly salt-depleted. Losartan causes no change in the glomerular filtration rate and either no modification or only a slight increase in renal blood flow. Losartan significantly increases urinary sodium excretion, however, and surprisingly produces a transient rise in urinary potassium excretion. Finally, losartan increases uric acid excretion and lowers plasma uric acid levels. CONCLUSIONS: These results suggest that losartan is an effective angiotensin II receptor antagonist in normal subjects. Its safety and clinical efficacy in hypertensive patients will be addressed in large clinical trials.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective The goal of this study was to investigate whether increasing the dose of an angiotensin II receptor blocker (ARB) provides as much benefits as combining the ARB with an angiotensin-converting enzyme inhibitor (ACEI) in terms of blood pressure (BP) control and urinary albumin excretion (UAE) in hypertensive patients with a proteinuria.Methods We enrolled 20 hypertensive patients with proteinuric nephropathies and a reduced renal function in a randomized, 12-month, triple-crossover, prospective, open-label study to compare the effects of a regular dose of losartan (Los 100mg q.d., LOS100) vs. a high dose of losartan (Los 100mg b.i.d., LOS200) vs. losartan 100mg q.d. associated with lisinopril 20 mg q.d. (LOS100 + LIS20). Each treatment was given for 8 weeks with a 4-week initial run-in period and 2 weeks of washout between each treatment phases. 24 h UAE and ambulatory BP were measured during the running phase and at the end of each treatment period.Results Compared to pretreatment, 24 h SBP and DBP were reduced by 10/5 +/- 7/4 mmHg with LOS100 (P=0.023 vs. baseline) and, respectively, 13/6 +/- 12/5 mmHg with LOS200 (P=0.011) and 19/9 +/- 15/8 mmHg with LOS100+LIS20 (P < 0.01). UAE decreased significantly with LOS100 and to an even greater degree with LOS200 and LOS100+LIS20 (P < 0.01 vs. baseline for both and P=0.032, LOS100+LIS20 vs. LOS200). The combination had a greater impact in patients with a high baseline proteinuria as suggested by a nonparallel leftward shift of the relationship between the changes in UAE induced by the combination and those induced by LOS200. The high dose of losartan was better tolerated than the combination.Conclusion Increasing the dose of losartan from 100mg once daily to 100mg twice a day enables to obtain a greater decrease in BP and proteinuria and is better tolerated than combining the ARB with lisinopril, though the high dose appears to be slightly less effective than the combination in patients with a marked proteinuria. J Hypertens 29: 1228-1235 (C) 2011 Wolters Kluwer Health vertical bar Lippincott Williams & Wilkins.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We investigated the tolerability and angiotensin II antagonist activity of oral DuP 532 in healthy male subjects. DuP 532 (1 to 200 mg) was well tolerated, with no effect on blood pressure or heart rate. Compared with losartan (100 mg), DuP 532 (200 mg) was a weak antagonist of pressor responses to intravenous angiotensin II. Maximum inhibition of diastolic pressor response was 86% (95% confidence interval [CI], 84%, 88%) approximately 4.6 hours after losartan and 48% (95% CI, 38%, 56%) 8.7 hours after DuP 532. Twenty-four hours after dosing, inhibition by losartan and DuP 532 was similar (40% to 45%). DUP 532 is extensively bound in human plasma, with an in vitro free fraction of 0.06. Although DuP 532 and EXP3174 (losartan's active metabolite) have similar AT1-receptor potency, and plasma concentrations of DuP 532 were much greater than losartan/EXP3174, the level of antagonism was much less for DuP 532. These results indicate that multiple factors determine the in vivo potency of angiotensin II antagonists, including affinity for and distribution to the receptor as modulated by plasma binding.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this study was to investigate the relationships between plasma concentrations of losartan, an orally active angiotensin II inhibitor, its active metabolite EXP3174, and angiotensin II blockade. Six healthy subjects received single oral doses of 40, 80, or 120 mg losartan and placebo at 1-week intervals in a crossover study. Angiotensin II blockade was assessed by the blood pressure response to exogenous angiotensin II before and after losartan administration. EXP3174 reached higher plasma concentrations and was eliminated more slowly than its parent compound; its levels paralleled the profile of angiotensin II blockade closer than losartan. Inhibition of the pressure response was dose dependent. The Hill-shaped relationship between response and EXP3174 concentration (or time-integrated variables) approached a plateau with 80 mg. The dose-dependent increase in plasma renin and angiotensin II exhibited a considerable individual scatter. We conclude that losartan produces a dose-dependent, effective angiotensin II blockade that is largely determined by the active metabolite EXP3174.