222 resultados para Amino-acid Transporter-5
Resumo:
The transcriptional transactivational activities of the phosphoprotein cAMP-response element-binding protein (CREB) are activated by the cAMP-dependent protein kinase A signaling pathway. Dimers of CREB bind to the palindromic DNA element 5'-TGACGTCA-3' (or similar motifs) called cAMP-responsive enhancers (CREs) found in the control regions of many genes, and activate transcription in response to phosphorylation of CREB by protein kinase A. Earlier we reported on the cyclical expression of the CREB gene in the Sertoli cells of the rat testis that occurred concomitant with the FSH-induced rise in cellular cAMP levels and suggested that transcription of the CREB gene may be autoregulated by cAMP-dependent transcriptional proteins. We now report the structure of the 5'-flanking sequence of the human CREB gene containing promoter activity. The promoter has a high content of guanosines and cytosines and lacks canonical TATA and CCAAT boxes typically found in the promoters of genes in eukaryotes. Notably, the promoter contains three CREs and transcriptional activities of a promoter-luciferase reporter plasmid transfected to placental JEG-3 cells are increased 3- to 5-fold over basal activities in response to either cAMP or 12-O-tetradecanoyl phorbol-14-acetate, and give 6- to 7-fold responses when both agents are added. The CREs bind recombinant CREB and endogenous CREB or CREB-like proteins contained in placental JEG-3 cells and also confer cAMP-inducible transcriptional activation to a heterologous minimal promoter. Our studies suggest that the expression of the CREB gene is positively autoregulated in trans.
Resumo:
A vaccinia virus late gene coding for a major structural polypeptide of 11 kDa was sequenced. Although the 5' flanking gene region is very A+T rich, it shows little homology either to the corresponding region of vaccinia early genes or to consensus sequences characteristic of most eukaryotic genes. Three DNA fragments (100, 200, and 500 base pairs, respectively), derived from the flanking region and including the late gene mRNA start site, were inserted into the coding sequence of the vaccinia virus thymidine kinase (TK) early gene by homologous in vivo recombination. Recombinants were selected on the basis of their TK- phenotype. Cells were infected with the recombinant viruses and RNA was isolated at 1-hr intervals. Transcripts initiating either from the TK early promoter, or from the late gene promoter at its authentic position, or from the translocated late gene promoters within the early gene were detected by nuclease S1 mapping. Early after infection, only transcripts from the TK early promoter were detected. Later in infection, however, transcripts were also initiated from the translocated late promoters. This RNA appeared at the same time and in similar quantities as the RNA from the late promoter at its authentic position. No quantitative differences in promoter efficiency between the 100-, 200-, and 500-base-pair insertions were observed. We conclude that all necessary signals for correct regulation of late-gene expression reside within only 100 base pairs of 5' flanking sequence.
Resumo:
Identification and relative quantification of hundreds to thousands of proteins within complex biological samples have become realistic with the emergence of stable isotope labeling in combination with high throughput mass spectrometry. However, all current chemical approaches target a single amino acid functionality (most often lysine or cysteine) despite the fact that addressing two or more amino acid side chains would drastically increase quantifiable information as shown by in silico analysis in this study. Although the combination of existing approaches, e.g. ICAT with isotope-coded protein labeling, is analytically feasible, it implies high costs, and the combined application of two different chemistries (kits) may not be straightforward. Therefore, we describe here the development and validation of a new stable isotope-based quantitative proteomics approach, termed aniline benzoic acid labeling (ANIBAL), using a twin chemistry approach targeting two frequent amino acid functionalities, the carboxylic and amino groups. Two simple and inexpensive reagents, aniline and benzoic acid, in their (12)C and (13)C form with convenient mass peak spacing (6 Da) and without chromatographic discrimination or modification in fragmentation behavior, are used to modify carboxylic and amino groups at the protein level, resulting in an identical peptide bond-linked benzoyl modification for both reactions. The ANIBAL chemistry is simple and straightforward and is the first method that uses a (13)C-reagent for a general stable isotope labeling approach of carboxylic groups. In silico as well as in vitro analyses clearly revealed the increase in available quantifiable information using such a twin approach. ANIBAL was validated by means of model peptides and proteins with regard to the quality of the chemistry as well as the ionization behavior of the derivatized peptides. A milk fraction was used for dynamic range assessment of protein quantification, and a bacterial lysate was used for the evaluation of relative protein quantification in a complex sample in two different biological states
Resumo:
In oviparous vertebrates vitellogenin, the precursor of the major yolk proteins, is synthesized in the liver of mature females under the control of estrogen. We have established the organization and primary structure of the 5' end region of the Xenopus laevis vitellogenin A2 gene and of the major chicken vitellogenin gene. The first three homologous exons have exactly the same length in both species, namely 53, 21 and 152 nucleotides, and present an overall sequence homology of 60%. In both species, the 5'-non-coding region of the vitellogenin mRNA measures only 13 nucleotides, nine of which are conserved. In contrast, the corresponding introns of the Xenopus and the chicken vitellogenin gene show no significant sequence homology. Within the 500 nucleotides preceding the 5' end of the genes, at least six blocks with sequence homologies of greater than 70% were detected. It remains to be demonstrated which of these conserved sequences, if any, are involved in the hormone-regulated expression of the vitellogenin genes.
Resumo:
The effects of infusion of a triglyceride emulsion (which induces peripheral insulin resistance) and amino acids (which stimulate gluconeogenesis) on glucose metabolism were investigated in healthy lean humans during exogenous infusion of glucose. One group of subjects (n = 5) was infused for 7.5 h with 11.1 mumol/kg/min glucose; during the last 4 h, amino acids were also infused at a rate of 3.33 mg/kg/min. A second group of subjects (n = 5) was infused with glucose+lipids (Lipovenös, 10% 10 ml/min) for 7.5 h and amino acids were added during the last 4 h. Infusion of lipids suppressed the increase in glucose oxidation observed during infusion of glucose alone (delta glucose oxidation: -2.1 +/- 1.1 vs. + 4.5 +/- 1.4 mumol/kg/min; P < 0.05) and during infusion of glucose+amino acids (delta glucose oxidation: + 1.6 +/- 1.4 vs. + 10.6 +/- 1.2 mumol/kg/min; P < 0.05). Gluconeogenesis (determined from 13C glucose synthesis during infusion of 13C bicarbonate) increased from 1.1 +/- 0.2 mumol/kg/min during infusion of glucose and 1.6 +/- 0.3 during infusion of glucose+lipids to 3.2 +/- 0.4 and 3.1 +/- 0.4, respectively, when amino acid infusion was superimposed (P < 0.05 in both instances). Plasma glucose concentrations were identical during infusion of glucose alone or glucose+amino acids, with or without lipids. Insulin concentrations were significantly increased by lipids both during infusion of glucose alone and of glucose+amino acids.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
Pneumocystis jirovecii is a fungus causing severe pneumonia in immuno-compromised patients. Progress in understanding its pathogenicity and epidemiology has been hampered by the lack of a long-term in vitro culture method. Obligate parasitism of this pathogen has been suggested on the basis of various features but remains controversial. We analysed the 7.0 Mb draft genome sequence of the closely related species Pneumocystis carinii infecting rats, which is a well established experimental model of the disease. We predicted 8'085 (redundant) peptides and 14.9% of them were mapped onto the KEGG biochemical pathways. The proteome of the closely related yeast Schizosaccharomyces pombe was used as a control for the annotation procedure (4'974 genes, 14.1% mapped). About two thirds of the mapped peptides of each organism (65.7% and 73.2%, respectively) corresponded to crucial enzymes for the basal metabolism and standard cellular processes. However, the proportion of P. carinii genes relative to those of S. pombe was significantly smaller for the "amino acid metabolism" category of pathways than for all other categories taken together (40 versus 114 against 278 versus 427, P<0.002). Importantly, we identified in P. carinii only 2 enzymes specifically dedicated to the synthesis of the 20 standard amino acids. By contrast all the 54 enzymes dedicated to this synthesis reported in the KEGG atlas for S. pombe were detected upon reannotation of S. pombe proteome (2 versus 54 against 278 versus 427, P<0.0001). This finding strongly suggests that species of the genus Pneumocystis are scavenging amino acids from their host's lung environment. Consequently, they would have no form able to live independently from another organism, and these parasites would be obligate in addition to being opportunistic. These findings have implications for the management of patients susceptible to P. jirovecii infection given that the only source of infection would be other humans.
Resumo:
Degradation of unsaturated fatty acids through the peroxisomal beta-oxidation pathway requires the participation of auxiliary enzymes in addition to the enzymes of the core beta-oxidation cycle. The auxiliary enzyme delta(3,5),delta(2,4)-dienoyl-coenzyme A (CoA) isomerase has been well studied in yeast (Saccharomyces cerevisiae) and mammals, but no plant homolog had been identified and characterized at the biochemical or molecular level. A candidate gene (At5g43280) was identified in Arabidopsis (Arabidopsis thaliana) encoding a protein showing homology to the rat (Rattus norvegicus) delta(3,5),delta(2,4)-dienoyl-CoA isomerase, and possessing an enoyl-CoA hydratase/isomerase fingerprint as well as aspartic and glutamic residues shown to be important for catalytic activity of the mammalian enzyme. The protein, named AtDCI1, contains a peroxisome targeting sequence at the C terminus, and fusion of a fluorescent protein to AtDCI1 directed the chimeric protein to the peroxisome in onion (Allium cepa) cells. AtDCI1 expressed in Escherichia coli was shown to have delta(3,5),delta(2,4)-dienoyl-CoA isomerase activity in vitro. Furthermore, using the synthesis of polyhydroxyalkanoate in yeast peroxisomes as an analytical tool to study the beta-oxidation cycle, expression of AtDCI1 was shown to complement the yeast mutant deficient in the delta(3,5),delta(2,4)-dienoyl-CoA isomerase, thus showing that AtDCI1 is also appropriately targeted to the peroxisome in yeast and has delta(3,5),delta(2,4)-dienoyl-CoA isomerase activity in vivo. The AtDCI1 gene is expressed constitutively in several tissues, but expression is particularly induced during seed germination. Proteins showing high homology with AtDCI1 are found in gymnosperms as well as angiosperms belonging to the Monocotyledon or Dicotyledon classes.
Resumo:
BACKGROUND: Zinc (Zn) is an essential trace element and it is abundant in connective tissues, however biological roles of Zn and its transporters in those tissues and cells remain unknown. METHODOLOGY/PRINCIPAL FINDINGS: Here we report that mice deficient in Zn transporter Slc39a13/Zip13 show changes in bone, teeth and connective tissue reminiscent of the clinical spectrum of human Ehlers-Danlos syndrome (EDS). The Slc39a13 knockout (Slc39a13-KO) mice show defects in the maturation of osteoblasts, chondrocytes, odontoblasts, and fibroblasts. In the corresponding tissues and cells, impairment in bone morphogenic protein (BMP) and TGF-beta signaling were observed. Homozygosity for a SLC39A13 loss of function mutation was detected in sibs affected by a unique variant of EDS that recapitulates the phenotype observed in Slc39a13-KO mice. CONCLUSIONS/SIGNIFICANCE: Hence, our results reveal a crucial role of SLC39A13/ZIP13 in connective tissue development at least in part due to its involvement in the BMP/TGF-beta signaling pathways. The Slc39a13-KO mouse represents a novel animal model linking zinc metabolism, BMP/TGF-beta signaling and connective tissue dysfunction.
Resumo:
The Na(+)-independent alanine-serine-cysteine transporter 1 (Asc-1) is exclusively expressed in neuronal structures throughout the central nervous system (CNS). Asc-1 transports small neutral amino acids with high affinity especially for D-serine and glycine (K(i): 8-12 microM), two endogenous glutamate co-agonists that activate N-methyl-D-aspartate (NMDA) receptors through interacting with the strychnine-insensitive glycine binding-site. By regulating D-serine (and possibly glycine) levels in the synaptic cleft, Asc-1 may play an important role in controlling neuronal excitability. We generated asc-1 gene knockout (asc-1(-/-)) mice to test this hypothesis. Behavioral phenotyping combined with electroencephalogram (EEG) recordings revealed that asc-1(-/-) mice developed tremors, ataxia, and seizures that resulted in early postnatal death. Both tremors and seizures were reduced by the NMDA receptor antagonist MK-801. Extracellular recordings from asc-1(-/-) brain slices indicated that the spontaneous seizure activity did not originate in the hippocampus, although, in this region, a relative increase in evoked synaptic responses was observed under nominal Mg(2+)-free conditions. Taken together with the known neurochemistry and neuronal distribution of the Asc-1 transporter, these results indicate that the mechanism underlying the behavioral hyperexcitability in mutant mice is likely due to overactivation of NMDA receptors, presumably resulting from elevated extracellular D-serine. Our study provides the first evidence to support the notion that Asc-1 transporter plays a critical role in regulating neuronal excitability, and indicate that the transporter is vital for normal CNS function and essential to postnatal survival of mice.
Resumo:
The high-affinity siderophore salicylate is an intermediate in the biosynthetic pathway of pyochelin, another siderophore and chelator of transition metal ions, in Pseudomonas aeruginosa. The 2.5-kb region upstream of the salicylate biosynthetic genes pchBA was sequenced and found to contain two additional, contiguous genes, pchD and pchC, having the same orientation. The deduced amino acid sequence of the 60-kDa PchD protein was similar to those of the EntE protein (2,3-dihydroxybenzoate-AMP ligase) of Escherichia coli and other adenylate-forming enzymes, suggesting that salicylate might be adenylated at the carboxyl group by PchD. The 28-kDa PchC protein showed similarities to thioesterases of prokaryotic and eukaryotic origin and might participate in the release of the product(s) formed from activated salicylate. One potential product, dihydroaeruginoate (Dha), was identified in culture supernatants of iron-limited P. aeruginosa cells. The antifungal antibiotic Dha is thought to arise from the reaction of salicylate with cysteine, followed by cyclization of cysteine. Inactivation of the chromosomal pchD gene by insertion of the transcription and translation stop element omega Sm/Sp abolished the production of Dha and pyochelin, implying that PchD-mediated activation of salicylate may be a common first step in the synthesis of both metabolites. Furthermore, the pchD::omega Sm/Sp mutation had a strong polar effect on the expression of the pchBA genes, i.e., on salicylate synthesis, indicating that the pchDCBA genes constitute a transcriptional unit. A full-length pchDCBA transcript of ca. 4.4 kb could be detected in iron-deprived, growing cells of P. aeruginosa. Transcription of pchD started at tandemly arranged promoters, which overlapped with two Fur boxes (binding sites for the ferric uptake regulator) and the promoter of the divergently transcribed pchR gene encoding an activator of pyochelin biosynthesis. This promoter arrangement allows tight iron-mediated repression of the pchDCBA operon.
Resumo:
Esters and amino acid derivatives of 5-aminolevulinic acid (ALA) are efficient prodrugs for the production of protoporphyrin IX (PpIX), which has been used in photodynamic cancer therapy (PDT). The synthesis of novel bioconjugates combining ALA with adenosine and thymidine is reported. The novel bioconjugates have been made using a robust methodology. The new class of prodrugs contains one, two, or three ALA per molecule. Preliminary cell tests in human cancer cell lines indicate that the thymidine conjugate of ALA is an efficient prodrug for PDT.
Resumo:
CREB is a cAMP-responsive nuclear DNA-binding protein that binds to cAMP response elements and stimulates gene transcription upon activation of the cAMP signalling pathway. The protein consists of an amino-terminal transcriptional transactivation domain and a carboxyl-terminal DNA-binding domain (bZIP domain) comprised of a basic region and a leucine zipper involved in DNA recognition and dimerization, respectively. Recently, we discovered a testis-specific transcript of CREB that contains an alternatively spliced exon encoding multiple stop codons. CREB encoded by this transcript is a truncated protein lacking the bZIP domain. We postulated that the antigen detected by CREB antiserum in the cytoplasm of germinal cells is the truncated CREB that must also lack its nuclear translocation signal (NTS). To test this hypothesis we prepared multiple expression plasmids encoding carboxyl-terminal deletions of CREB and transiently expressed them in COS-1 cells. By Western immunoblot analysis as well as immunocytochemistry of transfected cells, we show that CREB proteins truncated to amino acid 286 or shorter are sequestered in the cytoplasm, whereas a CREB of 295 amino acids is translocated into the nucleus. Chimeric CREBs containing a heterologous NTS fused to the first 248 or 261 amino acids of CREB are able to drive the translocation of the protein into the nucleus. Thus, the nine amino acids in the basic region involved in DNA recognition between positions 287 and 295 (RRKKKEYVK) of CREB contain the NTS. Further, mutation of the lysine at position 290 in CREB to an asparagine diminishes nuclear translocation of the protein.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
The mode of Na+ entry and the dynamics of intracellular Na+ concentration ([Na+]i) changes consecutive to the application of the neurotransmitter glutamate were investigated in mouse cortical astrocytes in primary culture by video fluorescence microscopy. An elevation of [Na+]i was evoked by glutamate, whose amplitude and initial rate were concentration dependent. The glutamate-evoked Na+ increase was primarily due to Na+-glutamate cotransport, as inhibition of non-NMDA ionotropic receptors by 6-cyano-7-nitroquinoxiline-2,3-dione (CNQX) only weakly diminished the response and D-aspartate, a substrate of the glutamate transporter, produced [Na+]i elevations similar to those evoked by glutamate. Non-NMDA receptor activation could nevertheless be demonstrated by preventing receptor desensitization using cyclothiazide. Thus, in normal conditions non-NMDA receptors do not contribute significantly to the glutamate-evoked Na+ response. The rate of Na+ influx decreased during glutamate application, with kinetics that correlate well with the increase in [Na+]i and which depend on the extracellular concentration of glutamate. A tight coupling between Na+ entry and Na+/K+ ATPase activity was revealed by the massive [Na+]i increase evoked by glutamate when pump activity was inhibited by ouabain. During prolonged glutamate application, [Na+]i remains elevated at a new steady-state where Na+ influx through the transporter matches Na+ extrusion through the Na+/K+ ATPase. A mathematical model of the dynamics of [Na+]i homeostasis is presented which precisely defines the critical role of Na+ influx kinetics in the establishment of the elevated steady state and its consequences on the cellular bioenergetics. Indeed, extracellular glutamate concentrations of 10 microM already markedly increase the energetic demands of the astrocytes.
Resumo:
HLA-A2+ melanoma patients develop naturally a strong CD8+ T cell response to a self-peptide derived from Melan-A. Here, we have used HLA-A2/peptide tetramers to isolate Melan-A-specific T cells from tumor-infiltrated lymph nodes of two HLA-A2+ melanoma patients and analyzed their TCR beta chain V segment and complementarity determining region 3 length and sequence. We found a broad diversity in Melan-A-specific immune T-cell receptor (TCR) repertoires in terms of both TCR beta chain variable gene segment usage and clonal composition. In addition, immune TCR repertoires selected in the patients were not overlapping. In contrast to previously characterized CD8+ T-cell responses to viral infections, this study provides evidence against usage of highly restricted TCR repertoire in the natural response to a self-differentiation tumor antigen.