121 resultados para Airway Remodeling
Resumo:
Type I IFNs are key cytokines in antiviral host defense. Preferentially expressed by plasmacytoid dendritic cells, type I IFNs are induced by viral infection and in common skin wounds. In this issue, Tohyama et al. identify a new link between type I IFNs and epidermal remodeling, by showing that type I IFNs specifically upregulate IL-22R expression on keratinocytes and, thereby, IL-22-mediated Stat3 phosphorylation in keratinocytes. The findings suggest that type I IFNs play dual roles in human skin: first, they induce immune activation with the induction of IL-22-producing T cells; second, they provide the interface between immune activation and epidermal remodeling by increasing keratinocyte responsiveness to IL-22.
Resumo:
Cardiac hypertrophy is associated with alterations in cardiomyocyte excitation-contraction coupling (ECC) and Ca(2+) handling. Chronic elevation of plasma angiotensin II (Ang II) is a major determinant in the pathogenesis of cardiac hypertrophy and congestive heart failure. However, the molecular mechanisms by which the direct actions of Ang II on cardiomyocytes contribute to ECC remodeling are not precisely known. This question was addressed using cardiac myocytes isolated from transgenic (TG1306/1R [TG]) mice exhibiting cardiac specific overexpression of angiotensinogen, which develop Ang II-mediated cardiac hypertrophy in the absence of hemodynamic overload. Electrophysiological techniques, photolysis of caged Ca(2+) and confocal Ca(2+) imaging were used to examine ECC remodeling at early ( approximately 20 weeks of age) and late ( approximately 60 weeks of age) time points during the development of cardiac dysfunction. In young TG mice, increased cardiac Ang II levels induced a hypertrophic response in cardiomyocyte, which was accompanied by an adaptive change of Ca(2+) signaling, specifically an upregulation of the Na(+)/Ca(2+) exchanger-mediated Ca(2+) transport. In contrast, maladaptation was evident in older TG mice, as suggested by reduced sarcoplasmic reticulum Ca(2+) content resulting from a shift in the ratio of plasmalemmal Ca(2+) removal and sarcoplasmic reticulum Ca(2+) uptake. This was associated with a conserved ECC gain, consistent with a state of hypersensitivity in Ca(2+)-induced Ca(2+) release. Together, our data suggest that chronic elevation of cardiac Ang II levels significantly alters cardiomyocyte ECC in the long term, and thereby contractility, independently of hemodynamic overload and arterial hypertension.
Resumo:
OBJECTIVES: To refine the classic definition of, and provide a working definition for, congenital high airway obstruction syndrome (CHAOS) and to discuss the various aspects of long-term airway reconstruction, including the range of laryngeal anomalies and the various techniques for reconstruction. DESIGN: Retrospective chart review. PATIENTS: Four children (age range, 2-8 years) with CHAOS who presented to a single tertiary care children's hospital for pediatric airway reconstruction between 1995 and 2000. CONCLUSIONS: To date, CHAOS remains poorly described in the otolaryngologic literature. We propose the following working definition for pediatric cases of CHAOS: any neonate who needs a surgical airway within 1 hour of birth owing to high upper airway (ie, glottic, subglottic, or upper tracheal) obstruction and who cannot be tracheally intubated other than through a persistent tracheoesophageal fistula. Therefore, CHAOS has 3 possible presentations: (1) complete laryngeal atresia without an esophageal fistula, (2) complete laryngeal atresia with a tracheoesophageal fistula, and (3) near-complete high upper airway obstruction. Management of the airway, particularly in regard to long-term reconstruction, in children with CHAOS is complex and challenging.
Resumo:
The purpose of this study was to assess the safety and efficacy of stenting in upper airway reconstructions for benign laryngotracheal stenosis (LTS) with a newly designed prosthesis, the LT-Mold?. The LT-Mold and its proper use during open surgery and endoscopy are described, and the experience gathered from a prospectively collected database on 65 patients treated for complex LTS or severe aspiration is reported. This series is compared to the results of other stenting methods. All patients were available for evaluation. In all but one case, the prosthesis was removed at the end of the study. The new prosthesis did not induce any stent-related trauma to the supraglottis, glottis and subglottis. Before adding a distal round-shaped silicone cap to the LT-Mold, granulation tissue was usually seen at the stent-mucosal interface at the tracheostoma level. In 14 cases, there has been a spontaneous extrusion of the prosthesis through the mouth; this problem was solved by fixing the prosthesis through the reinforced portion of the prosthesis at the cap level and by adding one fixation stitch in the supraglottis. We have to document the loss of the silicone cap in three cases. This problem was resolved by designing a new prototype with an integrated cap, glued with a slow hardening silicone glue. Fifty-four (83 %) of 65 patients were decannulated after a mean duration of stenting of 3 months (range 1-12 months). The mean follow-up after decannulation was 23 months (range 1 month to 10 years). The experience gathered with the LT-Mold shows that long-term stenting for complex LTS is safely achieved when the prosthesis is used with its distal integrated silicone cap. The softness and smoothness of the prosthesis with a round-shaped configuration of both extremities help avoid ulceration and granulation tissue formation in the reconstructed airway. Adequate fixation is mandatory to avoid extrusion.
Resumo:
BACKGROUND: Thymic stromal lymphopoietin (TSLP) is a cytokine primarily produced by epithelial cells, which has been shown to be a potent inducer of T-helper 2 (Th2)-type responses. However, TSLP has pleiotropic effects upon immune cells, and although extensively studied in the context of atopic asthma, its relevance as a therapeutic target and its role in the pathogenesis of nonatopic asthma remains unknown. We sought to investigate the role of TSLP in atopic, nonatopic and viral-induced exacerbations of pulmonary inflammation. METHODS: Using stringently defined murine models of atopic, nonatopic and virally exacerbated forms of pulmonary inflammation, we compared inflammatory responses of C57BL/6 wild-type (WT) and TSLP receptor-deficient (TSLPR KO) mice. RESULTS: Thymic stromal lymphopoietin receptor (TSLPR) signaling was crucial for the development of atopic asthma. Specifically, TSLPR signaling to lung recruited CD4+ T cells enhanced eosinophilia, goblet cell hyperplasia, and overall inflammation within the airways. In contrast, the absence of TSLPR signaling was associated with strikingly exaggerated pulmonary neutrophilic inflammation in a nonatopic model of airway inflammation. The inflammation was associated with excessive levels of interleukin (IL)-17A in the lungs, indicating that TSLP negatively regulates IL-17A. In addition, in a model of influenza-induced exacerbation of atopic airway inflammation, the absence of TSLPR signaling also led to exaggerated neutrophilic inflammation. CONCLUSION: Thymic stromal lymphopoietin plays divergent roles in the pathogenesis of atopic and nonatopic asthma phenotypes by either enhancing Th2 responses or curtailing T-helper 17 responses. These findings raise important caveats for the design of therapeutic interventions targeting TSLP in asthma.
Resumo:
BACKGROUND: Video-laryngoscopes are marketed for intubation in difficult airway management. They provide a better view of the larynx and may facilitate tracheal intubation, but there is no adequately powered study comparing different types of video-laryngoscopes in a difficult airway scenario or in a simulated difficult airway situation. METHODS/DESIGN: The objective of this trial is to evaluate and to compare the clinical performance of three video-laryngoscopes with a guiding channel for intubation (Airtraq?, A. P. Advance?, King Vision?) and three video-laryngoscopes without an integrated tracheal tube guidance (C-MAC?, GlideScope?, McGrath?) in a simulated difficult airway situation in surgical patients. The working hypothesis is that each video-laryngoscope provides at least a 90% first intubation success rate (lower limit of the 95% confidence interval >0.9). It is a prospective, patient-blinded, multicenter, randomized controlled trial in 720 patients who are scheduled for elective surgery under general anesthesia, requiring tracheal intubation at one of the three participating hospitals. A difficult airway will be created using an extrication collar and taping the patients' head on the operating table to substantially reduce mouth opening and to minimize neck movement. Tracheal intubation will be performed with the help of one of the six devices according to randomization. Insertion success, time necessary for intubation, Cormack-Lehane grade and percentage of glottic opening (POGO) score at laryngoscopy, optimization maneuvers required to aid tracheal intubation, adverse events and technical problems will be recorded. Primary outcome is intubation success at first attempt. DISCUSSION: We will simulate the difficult airway and evaluate different video-laryngoscopes in this highly realistic and clinically challenging scenario, independently from manufacturers of the devices. Because of the sufficiently powered multicenter design this study will deliver important and cutting-edge results that will help clinicians decide which device to use for intubation of the expected and unexpected difficult airway. TRIAL REGISTRATION: NCT01692535.
Resumo:
BACKGROUND: Sleeve lobectomy is a valid alternative to pneumonectomy for the treatment of centrally located operable non-small cell lung cancer (NSCLC), but concern has been evoked regarding a potentially increased risk of bronchial anastomosis complications after induction therapy. This study examined the impact of induction therapy on airway healing after sleeve lobectomy for NSCLC. METHODS: Bronchial anastomosis complications were recorded with respect to the induction regimen applied (neoadjuvant chemotherapy vs chemoradiotherapy) in a consecutive series of patients with sleeve lobectomy for NSCLC. RESULTS: Ninety-nine patients underwent sleeve resection, 28 of them after induction therapy. Twelve patients received chemotherapy alone, and 16 patients had radiochemotherapy. There were no significant differences in postoperative 90-day mortality (3.6% vs 2.8%) and morbidity (54% vs 49%) for patients with and without induction therapy. Bronchial anastomosis complications occurred in 3 patients (10.8%) with neoadjuvant therapy and in 2 (2.8%) without (p = 0.3). In the induction therapy group, two bronchial stenoses occurred after radiochemotherapy and one bronchopleural fistula after chemotherapy alone. In patients without induction therapy, one bronchial stenosis and one bronchopleural fistula were observed. All bronchial stenoses were successfully treated by dilatation, and both bronchopleural fistulas occurring after right lower lobectomy were successfully treated by reoperation and completion sleeve bilobectomy with preservation of the upper lobe. CONCLUSIONS: Sleeve lobectomy for NSCLC can be safely performed after induction chemotherapy and radiochemotherapy with mortality and incidence of airway complications similar to that observed in nonpretreated patients. The treatment of airway complications does not differ for patients with and without induction therapy.
Resumo:
Résumé de l'étude. L'application d'une pression positive (PEEP) pendant la phase d'induction d'une anesthésie générale peut prévenir la formation d'atélectasies pulmonaires. Ceci pourrait permettre d'accroître la durée d'apnée non hypoxique par l'augmentation de la capacité pulmonaire résiduelle fonctionnelle (CRF). Nous avons étudié le bénéfice de l'application d'une PEEP durant la phase d'induction d'une anesthésie générale sur la durée d'apnée avant que la saturation périphérique en oxygène atteigne 90%. Quarante patients ASA I-II ont été randomisés en deux groupes distincts. - Dans le groupe PEEP (n=20), les patients ont été pré-oxygénés durant 5 minutes avec une Fi02 à l00% par l'intermédiaire d'un appareil de CPAP (6cmH2O). Après induction de l'anesthésie, les patients furent ventilés mécaniquement (PEEP 6cmH2O) durant 5 minutes supplémentaires. - Dans le groupe ZEEP (n=20), aucune pression positive (ni CPAP, ni PEEP) ne fut utilisée. La durée d'apnée pour atteindre une saturation périphérique de 90% fut mesurée. La durée d'apnée non hypoxique était plus longue dans le groupe PEEP par rapport au groupe ZEEP (599 +/- 135 s vs 470 +/- 150 s, p= 0,007). Nous concluons que l'application d'une pression positive durant la phase d'induction d'une anesthésie générale chez l'adulte prolonge la durée d'apnée non hypoxique de plus de 2 minutes.
Resumo:
Abstract Objective: The objective of this retrospective study over a 5-year period was to assess the success rate of airway management by residents. Criteria of successful airway management were both the adherence to a standardized protocol of pre-hospital airway.
Resumo:
Airway epithelial cells have been shown to drive differentiation of monocytes into dendritic cells (DC) with suppressive phenotype. In this study we investigated the impact of virus-induced inflammatory mediator production on DC development. Monocyte differentiation into functional DC, as reflected by the expression of CD11c, CD123, BDCA-4 and DC-SIGN and the capacity to activate T cells, was similar for respiratory syncytial virus (RSV)- and mock-infected BEAS-2B and A549 cells. RSV-conditioned culture media resulted in a partially mature DC phenotype, but failed to upregulate CD80, CD83, CD86 and CCR7 and failed to release pro-inflammatory mediators upon TLR triggering. Nevertheless, these DCs were able to maintain an antiviral response by the release of type I IFN. Collectively, these data indicate that the airway epithelium maintains an important suppressive DC phenotype under inflammatory conditions induced by RSV infection.
Resumo:
Introduction. Preclinical and clinical evidences for a role of oral probiotics in the management of allergic diseases are emerging. Aim. We aimed at testing the immunomodulatory effects of intranasal versus intragastric administration of Lactobacillus paracasei NCC2461 in a mouse model of allergic airway inflammation and the specificity of different probiotics by comparing L. paracasei NCC2461 to Lactobacillus plantarum NCC1107. Methods. L. paracasei NCC2461 or L. plantarum NCC1107 strains were administered either intragastrically (NCC2461) or intranasally (NCC2461 or NCC1107) to OVA-sensitized mice challenged with OVA aerosols. Inflammatory cell recruitment into BALF, eotaxin and IL-5 production in the lungs were measured. Results. Intranasal L. paracasei NCC2461 efficiently protected sensitized mice upon exposure to OVA aerosols in a dose-dependent manner as compared to control mice. Inflammatory cell number, eotaxin and IL-5 were significantly reduced in BALF. Intranasal supplementation of L. paracasei NCC2461 was more potent than intragastric application in limiting the allergic response and possibly linked to an increase in T regulatory cells in the lungs. Finally, intranasal L. plantarum NCC1107 reduced total and eosinophilic lung inflammation, but increased neutrophilia and macrophages infiltration. Conclusion. A concerted selection of intervention schedule, doses, and administration routes (intranasal versus intragastric) may markedly contribute to modulate airway inflammation in a probiotic strain-specific manner.
Resumo:
Continuous positive airway pressure, aimed at preventing pulmonary atelectasis, has been used for decades to reduce lung injury in critically ill patients. In neonatal practice, it is increasingly used worldwide as a primary form of respiratory support due to its low cost and because it reduces the need for endotracheal intubation and conventional mechanical ventilation. We studied the anesthetized in vivo rat and determined the optimal circuit design for delivery of continuous positive airway pressure. We investigated the effects of continuous positive airway pressure following lipopolysaccharide administration in the anesthetized rat. Whereas neither continuous positive airway pressure nor lipopolysaccharide alone caused lung injury, continuous positive airway pressure applied following intravenous lipopolysaccharide resulted in increased microvascular permeability, elevated cytokine protein and mRNA production, and impaired static compliance. A dose-response relationship was demonstrated whereby higher levels of continuous positive airway pressure (up to 6 cmH(2)O) caused greater lung injury. Lung injury was attenuated by pretreatment with dexamethasone. These data demonstrate that despite optimal circuit design, continuous positive airway pressure causes significant lung injury (proportional to the airway pressure) in the setting of circulating lipopolysaccharide. Although we would currently avoid direct extrapolation of these findings to clinical practice, we believe that in the context of increasing clinical use, these data are grounds for concern and warrant further investigation.
Resumo:
Objective: Respiratory assistance with nasal continuous positive airway pressure (n-CPAP) is an effective treatment in premature newborns presenting respiratory distress. The aim of the study was to depict cardiac function, systemic (Qs) and pulmonary output (Qp) by echocardiography in stable premature infants requiring prolonged n-CPAP. Our hypothesis was that n-CPAP could reduce pulmonary blood flow. Patients and methods: All premature infants < 32 weeks gestation, > 7 days-old, requiring n-CPAP without severe respiratory compromise nor need for additional oxygen were prospectively included. Every patient had a first echocardiography while on n-CPAP. N-CPAP was then discontinued for two hours and a second echocardiography was performed. Results: 17 premature infants were included. Mean gestational age was 28 ± 2 weeks and mean weight 1.1 ± 0.3 kg. Following retrieval of n-CPAP we observed an increase in Qp of 53 ml/kg/min (95% CI 19-87 ml/kg/min), but no significant change in Qs. Consecutively a significant increase in Qp/Qs ratio of 16% was found (95% CI 7-29%). Conclusions: Nasal continuous positive airway pressure has hemodynamic effects in preterm infants in stable pulmonary and cardiac conditions. It reduces pulmonary output without interference with systemic output.