63 resultados para Airborne Laser Scanning Systems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract : Matrix metalloproteinases (MMPs) are thought to play a major role in the tumor dissemination process as they degrade all components of the extracellular matrix. However, failure of clinical trials testing broad MMP inhibitors in cancer led to the consensus that a better understanding of the MMP biology was required. Using intravital multiphoton laser scanning microscopy, we developed an in vivo model to observe tumor dissemination and extracellular matrix remodeling in real time. We show that the matrix-modifying hormone relaxin increases tumor associated fibroblast interaction with collagen fibers by inducing integrin beta-1 expression. This causes changes in the collagen network that are mediated by MMP-8 and MT1-MMP. Also, we show that MMP-mediated collagen remodeling in vivo requires a direct contact between stationary tumor associated fibroblasts (TAFs) and collagen fibers. As MMPs are expressed in the tumor and stromal compartment of breast cancers we determined the importance of Membrane-type 1 MMP (MT1-MMP) from each compartment for cancer progression. We find that tumor-MT1-MMP promotes the invasion of the blood vasculature and blood-borne metastasis in vivo by enhancing tumor cell migration and endothelial basement membrane degradation. Interestingly, stromal-MT1-MMP cannot compensate for the lack of tumor-MT1-MMP but promotes peritumor collagen I remodeling. Thus, the function of MT1-MMP is context dependent and we identify the different but complementary roles of tumor and stromal MT1-MMP for tumor dissemination. Finally, we translate our preclinical findings in to human breast cancer samples. We show that tumor-MT1-MMP expression correlates with tumor invasion of the blood vasculature in ER-PR-HER2- breast cancers and that MT1-MMP expression increases with cancer progression. MT1-MMP could thus represent an interesting therapeutic target for the prevention of blood vasculature invasion in these tumors. Resumé : Les matrix metalloproteinases (MMPs) semblent jouer un rôle majeur pour la dissémination tumorale en raison de leur capacité à dégrader l'ensemble des composants de la matrice extracellulaire (MEC). Néanmoins, les résultats décevants des études cliniques testant les inhibiteurs des MMP ont conduit à la notion qu'une compréhension plus précise de la biologie des MMP était requise. Dans ce travail de thèse, nous avons développé un modèle murin qui permet d'observer simultanément la dissémination tumorale ainsi que les modifications de la MEC en temps réel. Nous démontrons que le traitement de tumeurs par l'hormone relaxin augmente l'interaction des fibroblastes tumoraux avec les fibres de collagène via l'intégrine beta-1. Nous montrons que cette interaction favorise et est nécessaire à la dégradation des fibres de collagène par MMP-8 et MT1-MMP. Ensuite, étant donné que les MMPs sont exprimées dans les cellules tumorales et stromales des cancers du sein, nous nous sommes intéressés au rôle de la MMP membranaire type 1 (MT1-MMP) exprimée dans chacun de ces compartiments. Nous démontrons que MT1-MMP dérivant des cellules tumorales favorise leur invasion dans les vaisseaux sanguins par la dégradation de la membrane basale vasculaire. De manière inattendue, nous montrons que l'expression de MT1-MMP par le compartiment stromal ne peut compenser le manque de MT1-MMP dans le compartiment tumoral. Néanmoins, nos résultats prouvent que MT1-MMP dérivant du compartiment stromal est impliqué dans la dégradation de collagène peritumorale. La fonction de la protéine MT1-MMP varie donc selon le compartiment tumoral d'origine. Finalement, nous avons testé nos résultats pré cliniques chez l'humain. Dans des biopsies de cancer du sein nous montrons une corrélation entre l'expression de MT1-MMP dans les cellules tumorales et l'invasion de vaisseaux sanguins par des tumeurs ER-PR-HER2-. MT1-MMP pourrait donc être une cible intéressante pour la prévention de dissémination vasculaire de ces tumeurs

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bright-field wholemount labeling techniques applied to the mammalian central nervous system (CNS) offer advantages over conventional methods based on sections since an immediate and three-dimensional view of the stained components is provided. It thereby becomes possible to survey and count large number of cells and fibers in their natural relationships. The ability of confocal laser scanning microscopy to visualize in one focal plane the fluorescence associated with multiple markers could be most valuable by the availability of reliable wholemount fluorescent techniques. Accordingly, based in our previously published bright-field wholemount protocols [Brain Res. Prot. 2 (1998) 165-173], we have devised an effective immmunofluorescence wholemount procedure. We show that reliable wholemount fluorescent staining can be obtained using isolated complete CNS aged up to rat embryonic day 17, with antibodies penetration in the millimeter range. Examples are shown of preparations in which colocalization can be observed in nerve cells of cytoskeletal and calcium-binding proteins.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study shows how a new generation of terrestrial laser scanners can be used to investigate glacier surface ablation and other elements of glacial hydrodynamics at exceptionally high spatial and temporal resolution. The study area is an Alpine valley glacier, Haut Glacier d'Arolla, Switzerland. Here we use an ultra-long-range lidar RIEGL VZ-6000 scanner, having a laser specifically designed for measurement of snow- and ice-cover surfaces. We focus on two timescales: seasonal and daily. Our results show that a near-infrared scanning laser system can provide high-precision elevation change and ablation data from long ranges, and over relatively large sections of the glacier surface. We use it to quantify spatial variations in the patterns of surface melt at the seasonal scale, as controlled by both aspect and differential debris cover. At the daily scale, we quantify the effects of ogive-related differences in ice surface debris content on spatial patterns of ablation. Daily scale measurements point to possible hydraulic jacking of the glacier associated with short-term water pressure rises. This latter demonstration shows that this type of lidar may be used to address subglacial hydrologic questions, in addition to motion and ablation measurements.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Characterizing the geological features and structures in three dimensions over inaccessible rock cliffs is needed to assess natural hazards such as rockfalls and rockslides and also to perform investigations aimed at mapping geological contacts and building stratigraphy and fold models. Indeed, the detailed 3D data, such as LiDAR point clouds, allow to study accurately the hazard processes and the structure of geologic features, in particular in vertical and overhanging rock slopes. Thus, 3D geological models have a great potential of being applied to a wide range of geological investigations both in research and applied geology projects, such as mines, tunnels and reservoirs. Recent development of ground-based remote sensing techniques (LiDAR, photogrammetry and multispectral / hyperspectral images) are revolutionizing the acquisition of morphological and geological information. As a consequence, there is a great potential for improving the modeling of geological bodies as well as failure mechanisms and stability conditions by integrating detailed remote data. During the past ten years several large rockfall events occurred along important transportation corridors where millions of people travel every year (Switzerland: Gotthard motorway and railway; Canada: Sea to sky highway between Vancouver and Whistler). These events show that there is still a lack of knowledge concerning the detection of potential rockfalls, making mountain residential settlements and roads highly risky. It is necessary to understand the main factors that destabilize rocky outcrops even if inventories are lacking and if no clear morphological evidences of rockfall activity are observed. In order to increase the possibilities of forecasting potential future landslides, it is crucial to understand the evolution of rock slope stability. Defining the areas theoretically most prone to rockfalls can be particularly useful to simulate trajectory profiles and to generate hazard maps, which are the basis for land use planning in mountainous regions. The most important questions to address in order to assess rockfall hazard are: Where are the most probable sources for future rockfalls located? What are the frequencies of occurrence of these rockfalls? I characterized the fracturing patterns in the field and with LiDAR point clouds. Afterwards, I developed a model to compute the failure mechanisms on terrestrial point clouds in order to assess the susceptibility to rockfalls at the cliff scale. Similar procedures were already available to evaluate the susceptibility to rockfalls based on aerial digital elevation models. This new model gives the possibility to detect the most susceptible rockfall sources with unprecented detail in the vertical and overhanging areas. The results of the computation of the most probable rockfall source areas in granitic cliffs of Yosemite Valley and Mont-Blanc massif were then compared to the inventoried rockfall events to validate the calculation methods. Yosemite Valley was chosen as a test area because it has a particularly strong rockfall activity (about one rockfall every week) which leads to a high rockfall hazard. The west face of the Dru was also chosen for the relevant rockfall activity and especially because it was affected by some of the largest rockfalls that occurred in the Alps during the last 10 years. Moreover, both areas were suitable because of their huge vertical and overhanging cliffs that are difficult to study with classical methods. Limit equilibrium models have been applied to several case studies to evaluate the effects of different parameters on the stability of rockslope areas. The impact of the degradation of rockbridges on the stability of large compartments in the west face of the Dru was assessed using finite element modeling. In particular I conducted a back-analysis of the large rockfall event of 2005 (265'000 m3) by integrating field observations of joint conditions, characteristics of fracturing pattern and results of geomechanical tests on the intact rock. These analyses improved our understanding of the factors that influence the stability of rock compartments and were used to define the most probable future rockfall volumes at the Dru. Terrestrial laser scanning point clouds were also successfully employed to perform geological mapping in 3D, using the intensity of the backscattered signal. Another technique to obtain vertical geological maps is combining triangulated TLS mesh with 2D geological maps. At El Capitan (Yosemite Valley) we built a georeferenced vertical map of the main plutonio rocks that was used to investigate the reasons for preferential rockwall retreat rate. Additional efforts to characterize the erosion rate were made at Monte Generoso (Ticino, southern Switzerland) where I attempted to improve the estimation of long term erosion by taking into account also the volumes of the unstable rock compartments. Eventually, the following points summarize the main out puts of my research: The new model to compute the failure mechanisms and the rockfall susceptibility with 3D point clouds allows to define accurately the most probable rockfall source areas at the cliff scale. The analysis of the rockbridges at the Dru shows the potential of integrating detailed measurements of the fractures in geomechanical models of rockmass stability. The correction of the LiDAR intensity signal gives the possibility to classify a point cloud according to the rock type and then use this information to model complex geologic structures. The integration of these results, on rockmass fracturing and composition, with existing methods can improve rockfall hazard assessments and enhance the interpretation of the evolution of steep rockslopes. -- La caractérisation de la géologie en 3D pour des parois rocheuses inaccessibles est une étape nécessaire pour évaluer les dangers naturels tels que chutes de blocs et glissements rocheux, mais aussi pour réaliser des modèles stratigraphiques ou de structures plissées. Les modèles géologiques 3D ont un grand potentiel pour être appliqués dans une vaste gamme de travaux géologiques dans le domaine de la recherche, mais aussi dans des projets appliqués comme les mines, les tunnels ou les réservoirs. Les développements récents des outils de télédétection terrestre (LiDAR, photogrammétrie et imagerie multispectrale / hyperspectrale) sont en train de révolutionner l'acquisition d'informations géomorphologiques et géologiques. Par conséquence, il y a un grand potentiel d'amélioration pour la modélisation d'objets géologiques, ainsi que des mécanismes de rupture et des conditions de stabilité, en intégrant des données détaillées acquises à distance. Pour augmenter les possibilités de prévoir les éboulements futurs, il est fondamental de comprendre l'évolution actuelle de la stabilité des parois rocheuses. Définir les zones qui sont théoriquement plus propices aux chutes de blocs peut être très utile pour simuler les trajectoires de propagation des blocs et pour réaliser des cartes de danger, qui constituent la base de l'aménagement du territoire dans les régions de montagne. Les questions plus importantes à résoudre pour estimer le danger de chutes de blocs sont : Où se situent les sources plus probables pour les chutes de blocs et éboulement futurs ? Avec quelle fréquence vont se produire ces événements ? Donc, j'ai caractérisé les réseaux de fractures sur le terrain et avec des nuages de points LiDAR. Ensuite, j'ai développé un modèle pour calculer les mécanismes de rupture directement sur les nuages de points pour pouvoir évaluer la susceptibilité au déclenchement de chutes de blocs à l'échelle de la paroi. Les zones sources de chutes de blocs les plus probables dans les parois granitiques de la vallée de Yosemite et du massif du Mont-Blanc ont été calculées et ensuite comparés aux inventaires des événements pour vérifier les méthodes. Des modèles d'équilibre limite ont été appliqués à plusieurs cas d'études pour évaluer les effets de différents paramètres sur la stabilité des parois. L'impact de la dégradation des ponts rocheux sur la stabilité de grands compartiments de roche dans la paroi ouest du Petit Dru a été évalué en utilisant la modélisation par éléments finis. En particulier j'ai analysé le grand éboulement de 2005 (265'000 m3), qui a emporté l'entier du pilier sud-ouest. Dans le modèle j'ai intégré des observations des conditions des joints, les caractéristiques du réseau de fractures et les résultats de tests géoméchaniques sur la roche intacte. Ces analyses ont amélioré l'estimation des paramètres qui influencent la stabilité des compartiments rocheux et ont servi pour définir des volumes probables pour des éboulements futurs. Les nuages de points obtenus avec le scanner laser terrestre ont été utilisés avec succès aussi pour produire des cartes géologiques en 3D, en utilisant l'intensité du signal réfléchi. Une autre technique pour obtenir des cartes géologiques des zones verticales consiste à combiner un maillage LiDAR avec une carte géologique en 2D. A El Capitan (Yosemite Valley) nous avons pu géoréferencer une carte verticale des principales roches plutoniques que j'ai utilisé ensuite pour étudier les raisons d'une érosion préférentielle de certaines zones de la paroi. D'autres efforts pour quantifier le taux d'érosion ont été effectués au Monte Generoso (Ticino, Suisse) où j'ai essayé d'améliorer l'estimation de l'érosion au long terme en prenant en compte les volumes des compartiments rocheux instables. L'intégration de ces résultats, sur la fracturation et la composition de l'amas rocheux, avec les méthodes existantes permet d'améliorer la prise en compte de l'aléa chute de pierres et éboulements et augmente les possibilités d'interprétation de l'évolution des parois rocheuses.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Purpose: To investigate the differences between Fundus Camera (Topcon TRC-50X) and Confocal Scanning Laser Ophthalmoscope (Heidelberg retina angiogram (HRA)) on the fundus autofluorescence (FAF) imaging (resolution and FAF characteristics). Methods: 105 eyes of 56 patients with various retinal diseases underwent FAF imaging with HRA (488nm exciter/500nm barrier filter) before fluorescein angiography (FFA) and Topcon Fundus Camera (580nm exciter/695nm barrier filter) before and after FFA. The quality of the FAF images was compared for their resolution and analysed for the influence of fixation stability and cataracts. Hypo-and hyper-FAF behaviour was analysed for the healthy disc, healthy fovea, and a variety of pathological features. Results: HRA images were found to be of superior resolution in 18, while Topcon images were estimated superior in 29 eyes. No difference was found in 58 eyes. Both poor fixation (p=0.009) and more advanced cataract (p=0.013) were found associated with better image quality by Topcon. Images acquired by Topcon before and after FFA were identical (100%). The healthy disc was usually dark on HRA (72%), but showed mild autofluorescence on Topcon (85%). The healthy fovea showed in 100% Hypo-FAF on HRA, while Topcon showed in 53% Iso-FAF, in 43% mild Hypo-FAF, and in 4% Hypo-FAF as on HRA. No difference of FAF was found for geographic atrophy, pigment changes, and drusen, although Topcon images were often more detailed. Hyper-FAF due to serous exudation showed better on HRA. Cystic edema was visible only on HRA in a petaloid hyper-FAF pattern in 83%, while only two eyes (17%) showed similar behavior in both HRA- and Topcon images. Hard exudates caused Hypo-FAF only on HRA, hardly visible on Topcon. Blockage phenomenon by blood however was identical. Conclusions: The filter set of Topcon and the single image acquisition appear to be an advantage for patients with cataract and poor fixation respectively. Preceding FFA does not alter the Topcon FAF image. Regarding the FAF behavior, there are differences between the 2 systems which need to be taken into account when interpreting the images.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Purpose: To investigate the differences between the Fundus Camera (Topcon TRC-50X) and Confocal Scanning Laser Ophthalmoscope (Heidelberg retina angiogram (HRA)) on the fundus autofluorescence (FAF) imaging (resolution and FAF characteristics). Methods: Eighty nine eyes of 46 patients with various retinal diseases underwent FAF imaging with HRA (488nm exciter / 500nm barrier filter) before fluorescein angiography (FFA) and Topcon Fundus Camera (580nm exciter / 695nm barrier filter) before and after FFA. The quality of the FAF images was estimated, compared for their resolution and analysed for the influence of fixation stability and cataracts. Hypo- and hyper-FAF behaviour was analysed for the healthy disc, healthy fovea, and a variety of pathological features. Results: HRA images were found to be of superior quality in 18 eyes, while Topcon images were estimated superior in 21 eyes. No difference was found in 50 eyes. Both poor fixation (p=0.009) and more advanced cataract (p=0.013) were found to strongly increase the likelihood of better image quality by Topcon. Images acquired by Topcon before and after FFA were identical (100%). The healthy disc was usually dark on HRA (71%), but showed mild autofluorescence on Topcon (88%). The healthy fovea showed in 100% Hypo-FAF on HRA, while Topcon showed in 52% Iso-FAF, in 43% mild Hypo-FAF, and in 5% Hypo-FAF as on HRA. No difference of FAF was found for geographic atrophy, pigment changes, and drusen, although Topcon images were often more detailed. Hyper-FAF due to exudation showed better on HRA. Pigment epithelium detachment showed identical FAF behaviour on the border, but reduced FAF with Topcon in the center. Cystic edema was visible only on HRA in a petaloid pattern. Hard exsudates caused Hypo-FAF only on HRA, hardly visible on Topcon. Blocage phenomenon by blood however was identical. Conclusions: The filter set of Topcon and the single image acquisition appear to be an advantage for patients with cataract or poor fixation. Preceding FFA does not alter the Topcon FAF image. Regarding the FAF behaviour, there are differences between the two systems which need to be taken into account when interpreting the images.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

To compare autofluorescence (AF) images obtained with the confocal scanning laser ophthalmoscope (using the Heidelberg retina angiograph; HRA) and the modified Topcon fundus camera, in a routine clinical setting. A prospective comparative study conducted at the Jules-Gonin Eye Hospital. Fifty-six patients from the medical retina clinic. All patients had complete ophthalmic slit-lamp and fundus examinations, colour and red-free fundus photography, AF imaging with both instruments, and fluorescein angiography. Cataract and fixation were graded clinically. AF patterns were analyzed for healthy and pathological features. Differences of image noise were analyzed by cataract grading and fixation. A total of 105 eyes were included. AF patterns discovered by the retina angiograph and the fundus camera images, respectively, were a dark optic disc in 72 % versus 15 %, a dark fovea in 92 % versus 4 %, sub- and intraretinal fluid visible as hyperautofluorescence on HRA images only, lipid exudates visible as hypoautofluorescence on HRA images only. The same autofluorescent pattern was found on both images for geographic atrophy, retinal pigment changes, drusen and haemorrhage. Image noise was significantly associated with the degree of cataract and/or poor fixation, favouring the fundus camera. Images acquired by the fundus camera before and after fluorescein angiography were identical. Fundus AF images differ according to the technical differences of the instruments used. Knowledge of these differences is important not only for correctly interpreting images, but also for selecting the most appropriate instrument for the clinical situation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Molar heat capacities at constant pressure of six solid solutions and 11 intermediate phases in the Pd-Pb, Pd-Sn and Pd-In systems were determined each 10 K by differential scanning calorimetry from 310 to 1000 K, The experimental values have been fitted by polynomials C-p = a + bT + cT(2) + d/T-2. Results are given, discussed and compared with available literature data. (C) 2001 Elsevier Science B.V, AII rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Like numerous torrents in mountainous regions, the Illgraben creek (canton of Wallis, SW Switzerland) produces almost every year several debris flows. The total area of the active catchment is only 4.7 km², but large events ranging from 50'000 to 400'000 m³ are common (Zimmermann 2000). Consequently, the pathway of the main channel often changes suddenly. One single event can for instance fill the whole river bed and dig new several-meters-deep channels somewhere else (Bardou et al. 2003). The quantification of both, the rhythm and the magnitude of these changes, is very important to assess the variability of the bed's cross section and long profile. These parameters are indispensable for numerical modelling, as they should be considered as initial conditions. To monitor the channel evolution an Optech ILRIS 3D terrestrial laser scanner (LIDAR) was used. LIDAR permits to make a complete high precision 3D model of the channel and its surroundings by scanning it from different view points. The 3D data are treated and interpreted with the software Polyworks from Innovmetric Software Inc. Sequential 3D models allow for the determination of the variation in the bed's cross section and long profile. These data will afterwards be used to quantify the erosion and the deposition in the torrent reaches. To complete the chronological evolution of the landforms, precise digital terrain models, obtained by high resolution photogrammetry based on old aerial photographs, will be used. A 500 m long section of the Illgraben channel was scanned on 18th of August 2005 and on 7th of April 2006. These two data sets permit identifying the changes of the channel that occurred during the winter season. An upcoming scanning campaign in September 2006 will allow for the determination of the changes during this summer. Preliminary results show huge variations in the pathway of the Illgraben channel, as well as important vertical and lateral erosion of the river bed. Here we present the results of a river bank on the left (north-western) flank of the channel (Figure 1). For the August 2005 model the scans from 3 viewpoints were superposed, whereas the April 2006 3D image was obtained by combining 5 separate scans. The bank was eroded. The bank got eroded essentially on its left part (up to 6.3 m), where it is hit by the river and the debris flows (Figures 2 and 3). A debris cone has also formed (Figure 3), which suggests that a part of the bank erosion is due to shallow landslides. They probably occur when the river erosion creates an undercut slope. These geometrical data allow for the monitoring of the alluvial dynamics (i.e. aggradation and degradation) on different time scales and the influence of debris flows occurrence on these changes. Finally, the resistance against erosion of the bed's cross section and long profile will be analysed to assess the variability of these two key parameters. This information may then be used in debris flow simulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The detection of odour stimuli in the environment is universally important for primal behaviours such as feeding, mating, kin interactions and escape responses. Given the ubiquity of many airborne chemical signals and the similar organisation of animal olfactory circuits, a fundamental question in our understanding of the sense of smell is how species-specific behavioural responses to odorants can evolve. Recent comparative genomic, developmental and physiological studies are shedding light on this problem by providing insights into the genetic mechanisms that underlie anatomical and functional evolution of the olfactory system. Here we synthesise these data, with a particular focus on insect olfaction, to address how new olfactory receptors and circuits might arise and diverge, offering glimpses into how odour-evoked behaviours could adapt to an ever-changing chemosensory world.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Miniature diffusion size classifiers (miniDiSC) are novel handheld devices to measure ultrafine particles (UFP). UFP have been linked to the development of cardiovascular and pulmonary diseases; thus, detection and quantification of these particles are important for evaluating their potential health hazards. As part of the UFP exposure assessments of highwaymaintenance workers in western Switzerland, we compared a miniDiSC with a portable condensation particle counter (P-TRAK). In addition, we performed stationary measurements with a miniDiSC and a scanning mobility particle sizer (SMPS) at a site immediately adjacent to a highway. Measurements with miniDiSC and P-TRAK correlated well (correlation of r = 0.84) but average particle numbers of the miniDiSC were 30%âeuro"60% higher. This difference was significantly increased for mean particle diameters below 40 nm. The correlation between theminiDiSC and the SMPSduring stationary measurements was very high (r = 0.98) although particle numbers from the miniDiSC were 30% lower. Differences between the three devices were attributed to the different cutoff diameters for detection. Correction for this size dependent effect led to very similar results across all counters.We did not observe any significant influence of other particle characteristics. Our results suggest that the miniDiSC provides accurate particle number concentrations and geometric mean diameters at traffic-influenced sites, making it a useful tool for personal exposure assessment in such settings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Molar heat capacities of the binary compounds NiAl, NiIn, NiSi, NiGe, NiBi, NiSb, CoSb and FeSb were determined every 10 K by differential scanning calorimetry in the temperature range 310-1080 K. The experimental results have been fitted versus temperature according to C-p = a + b . T + c . T-2 + d . T-2. Results are given, discussed and compared to estimations found in the literature. Two compounds, NiBi and FeSb, are subject to transformations between 460 and 500 K. (C) 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work compares the detector performance and image quality of the new Kodak Min-R EV mammography screen-film system with the Fuji CR Profect detector and with other current mammography screen-film systems from Agfa, Fuji and Kodak. Basic image quality parameters (MTF, NPS, NEQ and DQE) were evaluated for a 28 kV Mo/Mo (HVL = 0.646 mm Al) beam using different mAs exposure settings. Compared with other screen-film systems, the new Kodak Min-R EV detector has the highest contrast and a low intrinsic noise level, giving better NEQ and DQE results, especially at high optical density. Thus, the properties of the new mammography film approach those of a fine mammography detector, especially at low frequency range. Screen-film systems provide the best resolution. The presampling MTF of the digital detector has a value of 15% at the Nyquist frequency and, due to the spread size of the laser beam, the use of a smaller pixel size would not permit a significant improvement of the detector resolution. The dual collection reading technology increases significantly the low frequency DQE of the Fuji CR system that can at present compete with the most efficient mammography screen-film systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The determination of line crossing sequences between rollerball pens and laser printers presents difficulties that may not be overcome using traditional techniques. This research aimed to study the potential of digital microscopy and 3-D laser profilometry to determine line crossing sequences between a toner and an aqueous ink line. Different paper types, rollerball pens, and writing pressure were tested. Correct opinions of the sequence were given for all case scenarios, using both techniques. When the toner was printed before the ink, a light reflection was observed in all crossing specimens, while this was never observed in the other sequence types. The 3-D laser profilometry, more time-consuming, presented the main advantage of providing quantitative results. The findings confirm the potential of the 3-D laser profilometry and demonstrate the efficiency of digital microscopy as a new technique for determining the sequence of line crossings involving rollerball pen ink and toner. With the mass marketing of laser printers and the popularity of rollerball pens, the determination of line crossing sequences between such instruments is encountered by forensic document examiners. This type of crossing presents difficulties with optical microscopic line crossing techniques involving ballpoint pens or gel pens and toner (1-4). Indeed, the rollerball's aqueous ink penetrates through the toner and is absorbed by the fibers of the paper, leaving the examiner with the impression that the toner is above the ink even when it is not (5). Novotny and Westwood (3) investigated the possibility of determining aqueous ink and toner crossing sequences by microscopic observation of the intersection before and after toner removal. A major disadvantage of their study resides in destruction of the sample by scraping off the toner line to see what was underneath. The aim of this research was to investigate the ways to overcome these difficulties through digital microscopy and three-dimensional (3-D) laser profilometry. The former was used as a technique for the determination of sequences between gel pen and toner printing strokes, but provided less conclusive results than that of an optical stereomicroscope (4). 3-D laser profilometry, which allows one to observe and measure the topography of a surface, has been the subject of a number of recent studies in this area. Berx and De Kinder (6) and Schirripa Spagnolo (7,8) have tested the application of laser profilometry to determine the sequence of intersections of several lines. The results obtained in these studies overcome disadvantages of other methods applied in this area, such as scanning electron microscope or the atomic force microscope. The main advantages of 3-D laser profilometry include the ease of implementation of the technique and its nondestructive nature, which does not require sample preparation (8-10). Moreover, the technique is reproducible and presents a high degree of freedom in the vertical axes (up to 1000 μm). However, when the paper surface presents a given roughness, if the pen impressions alter the paper with a depth similar to the roughness of medium, the results are not always conclusive (8). It becomes difficult in this case to distinguish which characteristics can be imputed to the pen impressions or the quality of the paper surface. This important limitation is assessed by testing different types of paper of variable quality (of different grammage and finishing) and the writing pressure. The authors will therefore assess the limits of 3-D laser profilometry technique and determine whether the method can overcome such constraints. Second, the authors will investigate the use of digital microscopy because it presents a number of advantages: it is efficient, user-friendly, and provides an objective evaluation and interpretation.