124 resultados para Aerobic Granulation
Resumo:
Hemoglobin concentration is one of the principal factors of aerobic power and, consequently, of performance in many types of physical activities. The use of recombinant human erythropoietin is, therefore, particularly powerful for improving the physical performances of patients, and, more generally, improving their quality of life. This article discusses procedures for monitoring recombinant erythropoietin and its analogues in doping for athletic performance.
Resumo:
Stimulation of erythropoiesis is one of the most efficient ways of doping. This type of doping is advantageous for aerobic physical exercise and of particular interest to endurance athletes. Erythropoiesis, which takes place in bone marrow, is under the control of EPO, a hormone secreted primarily by the kidneys when the arterial oxygen tension decreases. In certain pathological disorders, such as chronic renal failure, the production of EPO is insufficient and results in anemia. The pharmaceutical industry has, thus, been very interested in developing drugs that stimulate erythropoiesis. With this aim, various strategies have been, and continue to be, envisaged, giving rise to an expanding range of drugs that are good candidates for doping. Anti-doping control has had to deal with this situation by developing appropriate methods for their detection. This article presents an overview of both the drugs and the corresponding methods of detection, and thus follows a roughly chronological order.
Resumo:
OBJECTIVE: Overweight (OW) and low fit children represent cardiovascular high-risk groups. A multidimensional school-based lifestyle intervention performed in 652 preschoolers reduced skinfold thickness and waist circumference, and improved fitness, but did not affect BMI. The objective of this study is to examine whether the intervention was equally effective in OW (≥90th national percentile) and/or low fit (lowest sex- and age-adjusted quartile of aerobic fitness) children compared to their normal weight and normal fit counterparts. DESIGN AND METHODS: Cluster randomized controlled single blinded trial, conducted in 2008/09 in 40 randomly selected preschool classes in Switzerland. The intervention included a playful physical activity program and lessons on nutrition, media use and sleeps. Primary outcomes were BMI and aerobic fitness; secondary outcomes included sum of four skinfolds, waist circumference and motor agility. Modification of intervention effects by BMI-group and fitness-group was tested by interaction terms. RESULTS: Compared to their counterparts, OW children (n = 130) had more beneficial effects on waist circumference (p for interaction = 0.001) and low fit children (n = 154) more beneficial effects on all adiposity outcomes (p for interaction ≤0.03). The intervention effects on both fitness outcomes were not modified by BMI- or fitness-group (all p for interaction ≥0.2). Average intervention effect sizes for BMI were -0.12, -0.05, -0.26 and -0.02 kg/m(2) and for aerobic fitness were 0.40, 0.30, 0.12 and 0.36 stages for OW, normal weight, low fit and normal fit children, respectively. Conclusions: This multidimensional intervention was equally and for some adiposity measures even more effective in high-risk preschoolers and represents a promising option for these children.
Resumo:
Sulfur speciation and the sources of water-soluble sulfate in three oxidizing sulfidic mine tailings impoundments were investigated by selective dissolution and stable isotopes. The studied tailings impoundments-Piuquenes, Cauquenes, and Salvador No. 1-formed from the exploitation of the Rio Blanco/La Andina, El Teniente, and El Salvador Chilean porphyry copper deposits, which are located in Alpine, Mediterranean, and hyperarid climates, respectively. The water-soluble sulfate may originate from dissolution of primary ore sulfates (e.g., gypsum, anhydrite, jarosite) or from oxidation of sulfide minerals exposed to aerobic conditions during mining activity. With increasing aridity and decreasing pyrite content of the tailings, the sulfur speciation in the unsaturated oxidation zones showed a trend from dominantly Fe(Ill) oxyhydroxide fixed sulfate (e.g., jarosite and schwertmannite) in Piuquenes toward increasing presence of water-soluble sulfate at Cauquenes and Salvador No. 1. In the saturated primary zones, sulfate is predominantly present in water-soluble form (mainly as anhydrite and/or gypsum). In the unsaturated zone at Piuquenes and Cauquenes,the delta(34)S(S04) values ranged from +0.5 parts per thousand to +2.0 parts per thousand and from -0.4 parts per thousand to +1.4 parts per thousand Vienna Canyon Diablo Troilite (V-CDT), respectively, indicating a major sulfate source from pyrite oxidation (delta(34)S(pyrite) -1.1 parts per thousand and -0.9 parts per thousand). In the saturated zone at Piuquenes and Cauquenes, the values ranged from -0.8%. to +0.3 parts per thousand and from +2.2 parts per thousand to +3.9 parts per thousand, respectively. At Cauquenes the 34 S enrichment in the saturated zone toward depth indicates the increasing contribution of isotopically heavy dissolved sulfate from primary anhydrite (similar to+10.9%o). At El Salvador No. 1, the delta(34)S(SO4) average value is -0.9 parts per thousand, suggesting dissolution of supergene sulfate minerals (jarosite, alunite, gypsum) with a delta(34)S similar to -0.7 parts per thousand as the most probable sulfate source. The gradual decrease Of delta(18)O(S04) values from the surface to the oxidation front in the tailings impoundments at Piuquenes (from -4.5 parts per thousand to -8.6 parts per thousand Vienna Standard Mean Ocean Water, V-SMOW) and at Cauquenes (from -1.3 parts per thousand to -3.5 parts per thousand) indicates the increasing importance of ferric iron as the main electron acceptor in the oxidation of pyrite. The different delta(18)O(SO4) values between the tailings impoundments studied here reflect the local climates.
Resumo:
PURPOSE: The aim of this study was to examine whether lipid oxidation predominates during 3 h of postexercise recovery in high-intensity interval exercise as compared with moderate-intensity continuous exercise on a cycle ergometer in fit young men (n = 12; 24.6 +/- 0.6 yr). METHODS: The energy substrate partitioning was evaluated during and after high-intensity submaximal interval exercise (INT, 1-min intervals at 80% of maximal aerobic power output [Wmax] with an intervening 1 min of active recovery at 40% Wmax) and 60-min moderate-intensity continuous exercise at 45% of maximal oxygen uptake (C45%) as well as a time-matched resting control trial (CON). Exercise bouts were matched for mechanical work output. RESULTS: During exercise, a significantly greater contribution of CHO and a lower contribution of lipid to energy expenditure were found in INT (512.7 +/- 26.6 and 41.0 +/- 14.0 kcal, respectively) than in C45% (406.3 +/- 21.2 and 170.3 +/- 24.0 kcal, respectively; P < 0.001) despite similar overall energy expenditure in both exercise trials (P = 0.13). During recovery, there were no significant differences between INT and C45% in substrate turnover and oxidation (P > 0.05). On the other hand, the mean contribution of lipids to energy yield was significantly higher after exercise trials (C45% = 61.3 +/- 4.2 kcal; INT = 66.7 +/- 4.7 kcal) than after CON (51.5 +/- 3.4 kcal; P < 0.05). CONCLUSIONS: These findings show that lipid oxidation during postexercise recovery was increased by a similar amount on two isoenergetic exercise bouts of different forms and intensities compared with the time-matched no-exercise control trial.
Resumo:
Mitochondrial impairment is hypothesized to contribute to the pathogenesis of insulin resistance. Mitofusin (Mfn) proteins regulate the biogenesis and maintenance of the mitochondrial network, and when inactivated, cause a failure in the mitochondrial architecture and decreases in oxidative capacity and glucose oxidation. Exercise increases muscle mitochondrial content, size, oxidative capacity and aerobic glucose oxidation. To address if Mfn proteins are implicated in these exercise-induced responses, we measured Mfn1 and Mfn2 mRNA levels, pre-, post-, 2 and 24 h post-exercise. Additionally, we measured the expression levels of transcriptional regulators that control mitochondrial biogenesis and functions, including PGC-1alpha, NRF-1, NRF-2 and the recently implicated ERRalpha. We show that Mfn1, Mfn2, NRF-2 and COX IV mRNA were increased 24 h post-exercise, while PGC-1alpha and ERRalpha mRNA increased 2 h post-exercise. Finally, using in vitro cellular assays, we demonstrate that Mfn2 gene expression is driven by a PGC-1alpha programme dependent on ERRalpha. The PGC-1alpha/ERRalpha-mediated induction of Mfn2 suggests a role of these two factors in mitochondrial fusion. Our results provide evidence that PGC-1alpha not only mediates the increased expression of oxidative phosphorylation genes but also mediates alterations in mitochondrial architecture in response to aerobic exercise in humans
Resumo:
The aim of this study was to examine the effect of an individualized overground walking interval training on gait performance [i.e., speed and energy cost (C(w))] in healthy elderly individuals. Twenty-two older adults were assigned to either a training group (TG; n=12, 73.4+/-3.9yr) or a non-training control group (CG; n=10, 70.9+/-9.6yr). TG participated in a 7-week individualized walking interval training at intensities progressing from 50 to 100% of ventilatory threshold (T (VE)). Aerobic fitness [maximal oxygen uptake (V O(2max)) and T (VE)], preferred walking speed (PWS), gross and net C(w) (GC(w) and NC(w), respectively) and relative effort (%V O(2max)) at PWS measured before training (PWS(1)) were assessed prior and following the intervention. All outcomes were measured on a treadmill. Significant improvements in GC(w) (-8%; P=0.007), NC(w) (-12%; P=0.003), relative effort (%V O(2max): -12%; P<0.001) and PWS (+12%; P<0.001) were observed in TG but not in CG (P>0.71). V O(2max) and T (VE) remained unchanged in both groups (P>0.57). Changes in GC(w) at PWS(1) (difference between GC(w) at PWS(1) measured pre and post intervention) were inversely correlated with changes in PWS (difference between pre and post PWS; r=-0.67; P=0.02). The decreased C(w) at PWS(1), with no concomitant improvement in aerobic fitness, represents the main contributing factor for the reduction of the relative effort at this speed. This also allows elderly people to increase their PWS post training. Therefore, the present walking training may be an effective way to improve walking performance and delay mobility impairment in older adults.
Resumo:
INTRODUCTION: In recent decades the treatment of non-specific low back pain has turned to active modalities, some of which were based on cognitive-behavioural principles. Non-randomised studies clearly favour functional multidisciplinary rehabilitation over outpatient physiotherapy. However, systematic reviews and meta-analysis provide contradictory evidence regarding the effects on return to work and functional status. The aim of the present randomised study was to compare long-term functional and work status after 3-week functional multidisciplinary rehabilitation or 18 supervised outpatient physiotherapy sessions. METHODS: 109 patients with non-specific low back pain were randomised to either a 3-week functional multidisciplinary rehabilitation programme, including physical and ergonomic training, psychological pain management, back school and information, or 18 sessions of active outpatient physiotherapy over 9 weeks. Primary outcomes were functional disability (Oswestry) and work status. Secondary outcomes were lifting capacity (Spinal Function Sort and PILE test), lumbar range-of-motion (modified-modified Schöber and fingertip-to-floor tests), trunk muscle endurance (Shirado and Biering-Sörensen tests) and aerobic capacity (modified Bruce test). RESULTS: Oswestry disability index was improved to a significantly greater extent after functional multidisciplinary rehabilitation compared to outpatient physiotherapy at follow-up of 9 weeks (P = 0.012), 9 months (P = 0.023) and 12 months (P = 0.011). Work status was significantly improved after functional multidisciplinary rehabilitation only (P = 0.012), resulting in a significant difference compared to outpatient physiotherapy at 12 months' follow-up (P = 0.012). Secondary outcome results were more contrasted. CONCLUSIONS: Functional multidisciplinary rehabilitation was better than outpatient physiotherapy in improving functional and work status. From an economic point of view, these results should be backed up by a cost-effectiveness study.
Resumo:
Hyperlactatemia is associated with an ominous prognosis in critical illness and must be rapidly detected. Lactate is produced by glycolysis through reduction of pyruvate, itself oxidized in the mitochondria. It is transported to the liver and converted to glucose through gluconeogenesis (Cori's cycle). Hyperlactatemia can result from excessive production or reduced clearance. Excess production can occur in aerobic conditions, following an increase in pyruvate generation, or in anaerobic conditions, due to impaired pyruvate oxidation. Reduced lactate clearance occurs as a result of liver hypoperfusion or hepatic failure. Lactate/pyruvate ratio, as well as the concomitant existence of metabolic acidosis (lactic acidosis), help distinguish the different mechanisms leading to hyperlactatemia, which are reviewed in detail in this article.
Resumo:
Sterol uptake in fungi is a multistep process that involves interaction between external sterols and the cell wall, incorporation of sterol molecules into the plasma membrane, and subsequent integration into intracellular membranes for turnover. ATP-binding cassette (ABC) transporters have been implicated in sterol uptake, but key features of their activity remain to be elucidated. Here, we apply fluorescent cholesterol (NBD-cholesterol) to monitor sterol uptake under anaerobic and aerobic conditions in two fungal species, Candida glabrata (Cg) and Saccharomyces cerevisiae (Sc). We found that in both fungal species, ABC transporter-dependent uptake of cholesterol under anaerobic conditions and in mutants lacking HEM1 gene is promoted in the presence of the serum protein albumin that is able to bind the sterol molecule. Furthermore, the C. glabrata ABC transporter CgAus1p expressed in S. cerevisiae requires the presence of serum or albumin for efficient cholesterol uptake. These results suggest that albumin can serve as sterol donor in ABC transporter-dependent sterol uptake, a process potentially important for growth of C. glabrata inside infected humans.
Resumo:
Astrocytes play a critical role in the regulation of brain metabolic responses to activity. One detailed mechanism proposed to describe the role of astrocytes in some of these responses has come to be known as the astrocyte-neuron lactate shuttle hypothesis (ANLSH). Although controversial, the original concept of a coupling mechanism between neuronal activity and glucose utilization that involves an activation of aerobic glycolysis in astrocytes and lactate consumption by neurons provides a heuristically valid framework for experimental studies. In this context, it is necessary to provide a survey of recent developments and data pertaining to this model. Thus, here, we review very recent experimental evidence as well as theoretical arguments strongly supporting the original model and in some cases extending it. Aspects revisited include the existence of glutamate-induced glycolysis in astrocytes in vitro, ex vivo, and in vivo, lactate as a preferential oxidative substrate for neurons, and the notion of net lactate transfer between astrocytes and neurons in vivo. Inclusion of a role for glycogen in the ANLSH is discussed in the light of a possible extension of the astrocyte-neuron lactate shuttle (ANLS) concept rather than as a competing hypothesis. New perspectives offered by the application of this concept include a better understanding of the basis of signals used in functional brain imaging, a role for neuron-glia metabolic interactions in glucose sensing and diabetes, as well as novel strategies to develop therapies against neurodegenerative diseases based upon improving astrocyte-neuron coupled energetics.
Resumo:
OBJECTIVE: Little is known about the influence of different training types on relative fat mobilization with exercise. The purpose of this study was to analyze the changes induced by aerobic training (AT), resistance (RT) or a combination of both (AT+RT) on total fat mass (TFM) and regional fat mass (RFM). Further, the relative contribution of different regions, upper limbs (UL), lower limbs (LL), and trunk (Tr), were compared. DESIGN AND METHODS: Forty-five overweight and premenopausal women were randomized in either AT, RT or AT+RT. All training groups exercised for the same duration (60 min), 3 times per week for 5 months. Body composition was estimated using dual energy X-ray absorptiometry. RESULTS: TFM decreased significantly in all groups (-4.6 ± 1.9 kg; -3.8 ± 2.6 kg, and -4.7 ± 3.0 kg in AT, RT, and AT+RT groups respectively; P < 0.001). The relative contribution of FM into each segment changed significantly: TrFM represented 46.6% ± 5.8% of TFM at baseline and reduced to 43.1% ± 5.5% (P < 0.001); LLFM was 39.7% ± 5.8% vs. 41.6% ± 5.7% (P < 0.01); ULFM was 11.3% ± 1.3% vs. 12.2% ± 1.4% (P < 0.01). CONCLUSION: Training type did not influence changes of TFM and RFM. Fat mobilization came predominantly from Tr in all training protocols. These findings suggest that overweight and obese women can reduce TFM and RFM, independently of training type.
Resumo:
Since the initial description of astrocytes by neuroanatomists of the nineteenth century, a critical metabolic role for these cells has been suggested in the central nervous system. Nonetheless, it took several technological and conceptual advances over many years before we could start to understand how they fulfill such a role. One of the important and early recognized metabolic function of astrocytes concerns the reuptake and recycling of the neurotransmitter glutamate. But the description of this initial property will be followed by several others including an implication in the supply of energetic substrates to neurons. Indeed, despite the fact that like most eukaryotic non-proliferative cells, astrocytes rely on oxidative metabolism for energy production, they exhibit a prominent aerobic glycolysis capacity. Moreover, this unusual metabolic feature was found to be modulated by glutamatergic activity constituting the initial step of the neurometabolic coupling mechanism. Several approaches, including biochemical measurements in cultured cells, genetic screening, dynamic cell imaging, nuclear magnetic resonance spectroscopy and mathematical modeling, have provided further insights into the intrinsic characteristics giving rise to these key features of astrocytes. This review will provide an account of the different results obtained over several decades that contributed to unravel the complex metabolic nature of astrocytes that make this cell type unique.
Resumo:
Blood pressure is lowered for a few hours after aerobic exercise, but also after resistance exercise, although for a shorter period of time. An exercise program can significantly lower resting and ambulatory BP measurements. Multiple mechanisms interact for the BP lowering effect, such as decreased total peripheral resistance, enhanced endothelial function, diminished sympathetic or rennin plasmatic activity, structural vascular modifications and baroreceptor reflex modulation. New exercises like eccentric or isometric (handgrip) contractions are promising. Resistance activities have long been considered dangerous for blood vessels because of increased arterial stiffness, but if the intensity remains moderate and aerobic exercises are integrated, then the effects are altogether beneficial.
Resumo:
Oxidative metabolism of isolated toad skin epithelium (Bufo viridis) was investigated in vitro under open-circuit conditions using the spectrophotometric oxyhemoglobin micromethod. This highly sensitive technique has been adapted for studying several epithelia in parallel and for detecting possible regional variations of oxygen uptake in individual epithelium. Changes in the proportion of mitochondria-rich cells (MRC) by ionic acclimation affected oxidative metabolism under nontransporting condition. After acclimation of animals to either NaNO3 or NaCl solutions (100 mmol/l, for greater than 2 wk), the number of MRC per square millimeter in epithelia from nonacclimated and NaNO3- and NaCl-acclimated animals was 350 +/- 113, 460 +/- 196, and 107 +/- 52, respectively. O2 uptake of nonacclimated and NaNO3-acclimated epithelia was significantly higher than that of NaCl-acclimated epithelia (i.e., 0.89 and 0.90 vs. 0.57 nmol O2.h-1.mm-2, respectively). The correlation established between O2 uptake and number of MRC allowed evaluation of the respiration rate of one single MRC, i.e., approximately 1 pmol O2/h. The lowest mitochondrial oxidative activity was found in the epithelia from NaCl-acclimated toads where the uncoupler 2,4-dinitrophenol (50 mumols/l) had the highest relative stimulatory effect (+114%). Acetazolamide (50 mumols/l), a potent inhibitor of carbonic anhydrase mainly present in the MRC, reduced selectively by 31% O2 uptake of the MRC-rich epithelia (NaNO3 acclimated). O2 uptake increased significantly by approximately 80% when basolateral pH increased from 5.8 to 7.8, but did not depend on apical pH. These findings indicate that under nontransporting (open-circuit) conditions, aerobic metabolism of the isolated toad skin epithelium is related to the density and/or characteristics of the MRC.(ABSTRACT TRUNCATED AT 250 WORDS)