49 resultados para Active audition, Self-organisation
Resumo:
OBJECTIVE: To describe the effect of HAART on Kaposi sarcoma herpes virus (KSHV) antibody response and viremia among HIV-positive MSM. DESIGN: A follow-up study of 272 HIV-positive MSM (including 22 with Kaposi sarcoma) who first initiated HAART between January 1996 and July 2004 in the Swiss HIV Cohort Study. METHODS: For each individual, two serum samples, one at HAART initiation and another 24 months later, were tested for latent and lytic KSHV antibodies using immunofluorescence assays, and for KSHV viremia using PCR. Factors associated with changes in KSHV antibody titers and viremia were evaluated. RESULTS: At HAART initiation, 69.1 and 75.0% of patients were seropositive to latent and lytic KSHV antibodies, respectively. Seropositivity was associated with the presence of Kaposi sarcoma, older age, lower CD8 cell count and higher CD4/CD8 ratio. Prevalence of KSHV viremia at HAART initiation was 6.4%, being significantly higher among patients with Kaposi sarcoma (35.0%), and those with HIV viral loads 100 000 copies/ml (11.7%) or higher. At 24-month follow-up, geometric mean titers (GMTs) among KSHV seropositive patients increased and antibody seroprevalence was higher. Having Kaposi sarcoma and/or CD4 cell counts less than 50 cells/microl at HAART initiation was associated both with higher probability for antibody titers to increase (including seroconversion) and larger increases in GMTs. Only one of 17 viremic patients at HAART initiation had viremia at 24-month follow-up. CONCLUSION: HAART increases KSHV-specific humoral immune response and clearance of viremia among HIV-infected MSM, consistent with the dramatic protection offered by HAART against Kaposi sarcoma.
Resumo:
Immunotherapy of cancer is often performed with altered "analog" peptide Ags optimized for HLA class I binding, resulting in enhanced immunogenicity, but the induced T cell responses require further evaluation. Recently, we demonstrated fine specificity differences and enhanced recognition of naturally presented Ag by T cells after vaccination with natural Melan-A/MART-1 peptide, as compared with analog peptide. In this study, we compared the TCR primary structures of 1489 HLA-A*0201/Melan-A(26-35)-specific CD8 T cells derived from both cohorts of patients. Although a strong preference for TRAV12-2 segment usage was present in nearly all patients, usage of particular TRAJ gene segments and CDR3alpha composition differed slightly after vaccination with natural vs analog peptide. Moreover, TCR beta-chain repertoires were broader after natural than analog peptide vaccination. In all patients, we observed a marked conservation of the CDR3beta amino acid composition with recurrent sequences centered on a glycyl-leucyl/valyl/alanyl-glycyl motif. In contrast to viral-specific TCR repertoires, such "public" motifs were primarily expressed by nondominant T cell clonotypes, which contrasted with "private" CDR3beta signatures frequently found in T cell clonotypes that dominated repertoires of individual patients. Interestingly, no differences in functional avidity were observed between public and private T cell clonotypes. Collectively, our data indicate that T cell repertoires generated against natural or analog Melan-A peptide exhibited slightly distinct but otherwise overlapping and structurally conserved TCR features, suggesting that the differences in binding affinity/avidity of TCRs toward pMHC observed in the two cohorts of patients are caused by subtle structural TCR variations.
Resumo:
Host cell factor-1 (HCF-1), a transcriptional co-regulator of human cell-cycle progression, undergoes proteolytic maturation in which any of six repeated sequences is cleaved by the nutrient-responsive glycosyltransferase, O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT). We report that the tetratricopeptide-repeat domain of O-GlcNAc transferase binds the carboxyl-terminal portion of an HCF-1 proteolytic repeat such that the cleavage region lies in the glycosyltransferase active site above uridine diphosphate-GlcNAc. The conformation is similar to that of a glycosylation-competent peptide substrate. Cleavage occurs between cysteine and glutamate residues and results in a pyroglutamate product. Conversion of the cleavage site glutamate into serine converts an HCF-1 proteolytic repeat into a glycosylation substrate. Thus, protein glycosylation and HCF-1 cleavage occur in the same active site.