52 resultados para Accuracy and precision
Resumo:
PURPOSE: To assess the technical feasibility of multi-detector row computed tomographic (CT) angiography in the assessment of peripheral arterial bypass grafts and to evaluate its accuracy and reliability in the detection of graft-related complications, including graft stenosis, aneurysmal changes, and arteriovenous fistulas. MATERIALS AND METHODS: Four-channel multi-detector row CT angiography was performed in 65 consecutive patients with 85 peripheral arterial bypass grafts. Each bypass graft was divided into three segments (proximal anastomosis, course of the graft body, and distal anastomosis), resulting in 255 segments. Two readers evaluated all CT angiograms with regard to image quality and the presence of bypass graft-related abnormalities, including graft stenosis, aneurysmal changes, and arteriovenous fistulas. The results were compared with McNemar test with Bonferroni correction. CT attenuation values were recorded at five different locations from the inflow artery to the outflow artery of the bypass graft. These findings were compared with the findings at duplex ultrasonography (US) in 65 patients and the findings at conventional digital subtraction angiography (DSA) in 27. RESULTS: Image quality was rated as good or excellent in 250 (98%) and in 252 (99%) of 255 bypass segments, respectively. There was excellent agreement both between readers and between CT angiography and duplex US in the detection of graft stenosis, aneurysmal changes, and arteriovenous fistulas (kappa = 0.86-0.99). CT angiography and duplex US were compared with conventional DSA, and there was no statistically significant difference (P >.25) in sensitivity or specificity between CT angiography and duplex US for both readers for detection of hemodynamically significant bypass stenosis or occlusion, aneurysmal changes, or arteriovenous fistulas. Mean CT attenuation values ranged from 232 HU in the inflow artery to 281 HU in the outflow artery of the bypass graft. CONCLUSION: Multi-detector row CT angiography may be an accurate and reliable technique after duplex US in the assessment of peripheral arterial bypass grafts and detection of graft-related complications, including stenosis, aneurysmal changes, and arteriovenous fistulas.
Resumo:
We modelled the future distribution in 2050 of 975 endemic plant species in southern Africa distributed among seven life forms, including new methodological insights improving the accuracy and ecological realism of predictions of global changes studies by: (i) using only endemic species as a way to capture the full realized niche of species, (ii) considering the direct impact of human pressure on landscape and biodiversity jointly with climate, and (iii) taking species' migration into account. Our analysis shows important promises for predicting the impacts of climate change in conjunction with land transformation. We have shown that the endemic flora of Southern Africa on average decreases with 41% in species richness among habitats and with 39% on species distribution range for the most optimistic scenario. We also compared the patterns of species' sensitivity with global change across life forms, using ecological and geographic characteristics of species. We demonstrate here that species and life form vulnerability to global changes can be partly explained according to species' (i) geographical distribution along climatic and biogeographic gradients, like climate anomalies, (ii) niche breadth or (iii) proximity to barrier preventing migration. Our results confirm that the sensitivity of a given species to global environmental changes depends upon its geographical distribution and ecological proprieties, and makes it possible to estimate a priori its potential sensitivity to these changes.
Resumo:
Current diagnostic methods in differentiating septic from non-septic arthritis are time-consuming (culture) or have limited sensitivity (Gram stain). Microcalorimetry is a novel method that can rapidly detect microorganisms by their heat production. We investigated the accuracy and time to detection of septic arthritis by using microcalorimetry. Patients older than 18 years of age with acute arthritis of native joints were prospectively included. Synovial fluid was aspirated and investigated by Gram stain, culture and microcalorimetry. The diagnosis of septic arthritis and non-septic arthritis were made by experienced rheumatologists or orthopaedic surgeons. Septic arthritis was diagnosed by considering the finding of acute arthritis together with findings such as positive Gram stain or positive culture of synovial fluid or positive blood culture. The sensitivity and specificity for diagnosing septic arthritis and the time to positivity of microcalorimetry were determined. Of 90 patients (mean age 64 years), nine had septic arthritis, of whom four (44 %) had positive Gram stain, six (67 %) positive synovial fluid culture and four (44 %) had positive blood culture. The sensitivity of microcalorimetry was 89 %, the specificity was 99 % and the mean detection time was 5.0 h (range, 2.2-8.0 h). Microcalorimetry is an accurate and rapid method for the diagnosis of septic arthritis. It has potential to be used in clinical practice in diagnosing septic arthritis.
Resumo:
Maintenance of adequate oxygenation is a mainstay of intensive care, however, recommendations on the safety, accuracy, and the potential clinical utility of invasive and non-invasive tools to monitor brain and systemic oxygenation in neurocritical care are lacking. A literature search was conducted for English language articles describing bedside brain and systemic oxygen monitoring in neurocritical care patients from 1980 to August 2013. Imaging techniques e.g., PET are not considered. A total of 281 studies were included, the majority described patients with traumatic brain injury (TBI). All tools for oxygen monitoring are safe. Parenchymal brain oxygen (PbtO2) monitoring is accurate to detect brain hypoxia, and it is recommended to titrate individual targets of cerebral perfusion pressure (CPP), ventilator parameters (PaCO2, PaO2), and transfusion, and to manage intracranial hypertension, in combination with ICP monitoring. SjvO2 is less accurate than PbtO2. Given limited data, NIRS is not recommended at present for adult patients who require neurocritical care. Systemic monitoring of oxygen (PaO2, SaO2, SpO2) and CO2 (PaCO2, end-tidal CO2) is recommended in patients who require neurocritical care.
Resumo:
Aim: Modelling species at the assemblage level is required to make effective forecast of global change impacts on diversity and ecosystem functioning. Community predictions may be achieved using macroecological properties of communities (MEM), or by stacking of individual species distribution models (S-SDMs). To obtain more realistic predictions of species assemblages, the SESAM framework suggests applying successive filters to the initial species source pool, by combining different modelling approaches and rules. Here we provide a first test of this framework in mountain grassland communities. Location: The western Swiss Alps. Methods: Two implementations of the SESAM framework were tested: a "Probability ranking" rule based on species richness predictions and rough probabilities from SDMs, and a "Trait range" rule that uses the predicted upper and lower bound of community-level distribution of three different functional traits (vegetative height, specific leaf area and seed mass) to constraint a pool of environmentally filtered species from binary SDMs predictions. Results: We showed that all independent constraints expectedly contributed to reduce species richness overprediction. Only the "Probability ranking" rule allowed slightly but significantly improving predictions of community composition. Main conclusion: We tested various ways to implement the SESAM framework by integrating macroecological constraints into S-SDM predictions, and report one that is able to improve compositional predictions. We discuss possible improvements, such as further improving the causality and precision of environmental predictors, using other assembly rules and testing other types of ecological or functional constraints.
Resumo:
This paper contains a joint ESHG/ASHG position document with recommendations regarding responsible innovation in prenatal screening with non-invasive prenatal testing (NIPT). By virtue of its greater accuracy and safety with respect to prenatal screening for common autosomal aneuploidies, NIPT has the potential of helping the practice better achieve its aim of facilitating autonomous reproductive choices, provided that balanced pretest information and non-directive counseling are available as part of the screening offer. Depending on the health-care setting, different scenarios for NIPT-based screening for common autosomal aneuploidies are possible. The trade-offs involved in these scenarios should be assessed in light of the aim of screening, the balance of benefits and burdens for pregnant women and their partners and considerations of cost-effectiveness and justice. With improving screening technologies and decreasing costs of sequencing and analysis, it will become possible in the near future to significantly expand the scope of prenatal screening beyond common autosomal aneuploidies. Commercial providers have already begun expanding their tests to include sex-chromosomal abnormalities and microdeletions. However, multiple false positives may undermine the main achievement of NIPT in the context of prenatal screening: the significant reduction of the invasive testing rate. This document argues for a cautious expansion of the scope of prenatal screening to serious congenital and childhood disorders, only following sound validation studies and a comprehensive evaluation of all relevant aspects. A further core message of this document is that in countries where prenatal screening is offered as a public health programme, governments and public health authorities should adopt an active role to ensure the responsible innovation of prenatal screening on the basis of ethical principles. Crucial elements are the quality of the screening process as a whole (including non-laboratory aspects such as information and counseling), education of professionals, systematic evaluation of all aspects of prenatal screening, development of better evaluation tools in the light of the aim of the practice, accountability to all stakeholders including children born from screened pregnancies and persons living with the conditions targeted in prenatal screening and promotion of equity of access.
Resumo:
The present study proposes a method based on ski fixed inertial sensors to automatically compute spatio-temporal parameters (phase durations, cycle speed and cycle length) for the diagonal stride in classical cross-country skiing. The proposed system was validated against a marker-based motion capture system during indoor treadmill skiing. Skiing movement of 10 junior to world-cup athletes was measured for four different conditions. The accuracy (i.e. median error) and precision (i.e. interquartile range of error) of the system was below 6ms for cycle duration and ski thrust duration and below 35ms for pole push duration. Cycle speed precision (accuracy) was below 0.1m/s (0.005m/s) and cycle length precision (accuracy) was below 0.15m (0.005m). The system was sensitive to changes of conditions and was accurate enough to detect significant differences reported in previous studies. Since capture volume is not limited and setup is simple, the system would be well suited for outdoor measurements on snow.