119 resultados para Absorption Measurements
Resumo:
The monocarboxylate transporter 1 (MCT1 or SLC16A1) is a carrier of short-chain fatty acids, ketone bodies, and lactate in several tissues. Genetically modified C57BL/6J mice were produced by targeted disruption of the mct1 gene in order to understand the role of this transporter in energy homeostasis. Null mutation was embryonically lethal, but MCT1 (+/-) mice developed normally. However, when fed high fat diet (HFD), MCT1 (+/-) mice displayed resistance to development of diet-induced obesity (24.8% lower body weight after 16 weeks of HFD), as well as less insulin resistance and no hepatic steatosis as compared to littermate MCT1 (+/+) mice used as controls. Body composition analysis revealed that reduced weight gain in MCT1 (+/-) mice was due to decreased fat accumulation (50.0% less after 9 months of HFD) notably in liver and white adipose tissue. This phenotype was associated with reduced food intake under HFD (12.3% less over 10 weeks) and decreased intestinal energy absorption (9.6% higher stool energy content). Indirect calorimetry measurements showed ∼ 15% increase in O2 consumption and CO2 production during the resting phase, without any changes in physical activity. Determination of plasma concentrations for various metabolites and hormones did not reveal significant changes in lactate and ketone bodies levels between the two genotypes, but both insulin and leptin levels, which were elevated in MCT1 (+/+) mice when fed HFD, were reduced in MCT1 (+/-) mice under HFD. Interestingly, the enhancement in expression of several genes involved in lipid metabolism in the liver of MCT1 (+/+) mice under high fat diet was prevented in the liver of MCT1 (+/-) mice under the same diet, thus likely contributing to the observed phenotype. These findings uncover the critical role of MCT1 in the regulation of energy balance when animals are exposed to an obesogenic diet.
Resumo:
Given the adverse impact of image noise on the perception of important clinical details in digital mammography, routine quality control measurements should include an evaluation of noise. The European Guidelines, for example, employ a second-order polynomial fit of pixel variance as a function of detector air kerma (DAK) to decompose noise into quantum, electronic and fixed pattern (FP) components and assess the DAK range where quantum noise dominates. This work examines the robustness of the polynomial method against an explicit noise decomposition method. The two methods were applied to variance and noise power spectrum (NPS) data from six digital mammography units. Twenty homogeneously exposed images were acquired with PMMA blocks for target DAKs ranging from 6.25 to 1600 µGy. Both methods were explored for the effects of data weighting and squared fit coefficients during the curve fitting, the influence of the additional filter material (2 mm Al versus 40 mm PMMA) and noise de-trending. Finally, spatial stationarity of noise was assessed.Data weighting improved noise model fitting over large DAK ranges, especially at low detector exposures. The polynomial and explicit decompositions generally agreed for quantum and electronic noise but FP noise fraction was consistently underestimated by the polynomial method. Noise decomposition as a function of position in the image showed limited noise stationarity, especially for FP noise; thus the position of the region of interest (ROI) used for noise decomposition may influence fractional noise composition. The ROI area and position used in the Guidelines offer an acceptable estimation of noise components. While there are limitations to the polynomial model, when used with care and with appropriate data weighting, the method offers a simple and robust means of examining the detector noise components as a function of detector exposure.
Resumo:
Since nitric oxide (NO) participates in the renal regulation of blood pressure, in part, by modulating transport of Na(+) and Cl(-) in the kidney, we asked whether NO regulates net Cl(-) flux (JCl) in the cortical collecting duct (CCD) and determined the transporter(s) that mediate NO-sensitive Cl(-) absorption. Cl(-) absorption was measured in CCDs perfused in vitro that were taken from aldosterone-treated mice. Administration of an NO donor (10 μM MAHMA NONOate) reduced JCl and transepithelial voltage (VT) both in the presence or absence of angiotensin II. However, reducing endogenous NO production by inhibiting NO synthase (100 μM N(G)-nitro-l-arginine methyl ester) increased JCl only in the presence of angiotensin II, suggesting that angiotensin II stimulates NO synthase activity. To determine the transport process that mediates NO-sensitive changes in JCl, we examined the effect of NO on JCl following either genetic ablation or chemical inhibition of transporters in the CCD. Since the application of hydrochlorothiazide (100 μM) or bafilomycin (5 nM) to the perfusate or ablation of the gene encoding pendrin did not alter NO-sensitive JCl, NO modulates JCl independent of the Na(+)-dependent Cl(-)/HCO3(-) exchanger (NDCBE, Slc4a8), the A cell apical plasma membrane H(+)-ATPase and pendrin. In contrast, both total and NO-sensitive JCl and VT were abolished with application of an epithelial Na(+) channel (ENaC) inhibitor (3 μM benzamil) to the perfusate. We conclude that NO reduces Cl(-) absorption in the CCD through a mechanism that is ENaC-dependent.
Resumo:
Canadian healthcare is changing. Over the course of the past decade, the Health Care in Canada Survey (HCIC) has annually measured the reactions of the public and professional stakeholders to many of these change forces. In HCIC 2008, for the first time, the public's perception of their health status and all stakeholders' views of the burden and effective management of chronic diseases were sought. Overall, Canadians perceive themselves as healthy, with 84% of adults reporting good-to-excellent health. However, good health decreased with age as the occurrence of chronic illness rose, from 12% in the age group 18-24 to 65% for the population =65 years. More than 70% of all stakeholders were strongly or somewhat supportive of the implementation of coordinated care, or disease management programs, to improve the care of patients with chronic illnesses. Concordant support was also expressed for key disease management components, including coordinated interventions to improve home, community and self-care; increased wellness promotion; and increased use of clinical measurements and feedback to all stakeholders. However, there were also important areas of non-concordance. For example, the public and doctors consistently expressed less support than other stakeholders for the value of team care, including the use of non-physician professionals to provide patient care; increased patient involvement in decision-making; and the use of electronic health records to facilitate communication. The actual participation in disease management programs averaged 34% for professionals and 25% for the public. We conclude that chronic diseases are common, age-related and burdensome in Canada. Disease management or coordinated intervention often delivered by teams is also relatively common, despite its less-than-universal acceptance by all stakeholders. Further insights are needed, particularly into the variable perceptions of the value and efficacy of team-delivered healthcare and its important components.
Resumo:
BACKGROUND: Hyperoxaluria is a major risk factor for kidney stone formation. Although urinary oxalate measurement is part of all basic stone risk assessment, there is no standardized method for this measurement. METHODS: Urine samples from 24-h urine collection covering a broad range of oxalate concentrations were aliquoted and sent, in duplicates, to six blinded international laboratories for oxalate, sodium and creatinine measurement. In a second set of experiments, ten pairs of native urine and urine spiked with 10 mg/L of oxalate were sent for oxalate measurement. Three laboratories used a commercially available oxalate oxidase kit, two laboratories used a high-performance liquid chromatography (HPLC)-based method and one laboratory used both methods. RESULTS: Intra-laboratory reliability for oxalate measurement expressed as intraclass correlation coefficient (ICC) varied between 0.808 [95% confidence interval (CI): 0.427-0.948] and 0.998 (95% CI: 0.994-1.000), with lower values for HPLC-based methods. Acidification of urine samples prior to analysis led to significantly higher oxalate concentrations. ICC for inter-laboratory reliability varied between 0.745 (95% CI: 0.468-0.890) and 0.986 (95% CI: 0.967-0.995). Recovery of the 10 mg/L oxalate-spiked samples varied between 8.7 ± 2.3 and 10.7 ± 0.5 mg/L. Overall, HPLC-based methods showed more variability compared to the oxalate oxidase kit-based methods. CONCLUSIONS: Significant variability was noted in the quantification of urinary oxalate concentration by different laboratories, which may partially explain the differences of hyperoxaluria prevalence reported in the literature. Our data stress the need for a standardization of the method of oxalate measurement.
Resumo:
Glioma cell lines are an important tool for research in basic and translational neuro-oncology. Documentation of their genetic identity has become a requirement for scientific journals and grant applications to exclude cross-contamination and misidentification that lead to misinterpretation of results. Here, we report the standard 16 marker short tandem repeat (STR) DNA fingerprints for a panel of 39 widely used glioma cell lines as reference. Comparison of the fingerprints among themselves and with the large DSMZ database comprising 9 marker STRs for 2278 cell lines uncovered 3 misidentified cell lines and confirmed previously known cross-contaminations. Furthermore, 2 glioma cell lines exhibited identity scores of 0.8, which is proposed as the cutoff for detecting cross-contamination. Additional characteristics, comprising lack of a B-raf mutation in one line and a similarity score of 1 with the original tumor tissue in the other, excluded a cross-contamination. Subsequent simulation procedures suggested that, when using DNA fingerprints comprising only 9 STR markers, the commonly used similarity score of 0.8 is not sufficiently stringent to unambiguously differentiate the origin. DNA fingerprints are confounded by frequent genetic alterations in cancer cell lines, particularly loss of heterozygosity, that reduce the informativeness of STR markers and, thereby, the overall power for distinction. The similarity score depends on the number of markers measured; thus, more markers or additional cell line characteristics, such as information on specific mutations, may be necessary to clarify the origin.
Resumo:
Relationships between porosity and hydraulic conductivity tend to be strongly scale- and site-dependent and are thus very difficult to establish. As a result, hydraulic conductivity distributions inferred from geophysically derived porosity models must be calibrated using some measurement of aquifer response. This type of calibration is potentially very valuable as it may allow for transport predictions within the considered hydrological unit at locations where only geophysical measurements are available, thus reducing the number of well tests required and thereby the costs of management and remediation. Here, we explore this concept through a series of numerical experiments. Considering the case of porosity characterization in saturated heterogeneous aquifers using crosshole ground-penetrating radar and borehole porosity log data, we use tracer test measurements to calibrate a relationship between porosity and hydraulic conductivity that allows the best prediction of the observed hydrological behavior. To examine the validity and effectiveness of the obtained relationship, we examine its performance at alternate locations not used in the calibration procedure. Our results indicate that this methodology allows us to obtain remarkably reliable hydrological predictions throughout the considered hydrological unit based on the geophysical data only. This was also found to be the case when significant uncertainty was considered in the underlying relationship between porosity and hydraulic conductivity.
Resumo:
The activity of radiopharmaceuticals in nuclear medicine is measured before patient injection with radionuclide calibrators. In Switzerland, the general requirements for quality controls are defined in a federal ordinance and a directive of the Federal Office of Metrology (METAS) which require each instrument to be verified. A set of three gamma sources (Co-57, Cs-137 and Co-60) is used to verify the response of radionuclide calibrators in the gamma energy range of their use. A beta source, a mixture of (90)Sr and (90)Y in secular equilibrium, is used as well. Manufacturers are responsible for the calibration factors. The main goal of the study was to monitor the validity of the calibration factors by using two sources: a (90)Sr/(90)Y source and a (18)F source. The three types of commercial radionuclide calibrators tested do not have a calibration factor for the mixture but only for (90)Y. Activity measurements of a (90)Sr/(90)Y source with the (90)Y calibration factor are performed in order to correct for the extra-contribution of (90)Sr. The value of the correction factor was found to be 1.113 whereas Monte Carlo simulations of the radionuclide calibrators estimate the correction factor to be 1.117. Measurements with (18)F sources in a specific geometry are also performed. Since this radionuclide is widely used in Swiss hospitals equipped with PET and PET-CT, the metrology of the (18)F is very important. The (18)F response normalized to the (137)Cs response shows that the difference with a reference value does not exceed 3% for the three types of radionuclide calibrators.
Resumo:
Birnessites precipitated by bacteria are typically poorly crystalline Mn(IV) oxides enmeshed within biofilms to form complex biomass-birnessite assemblages. The strong sorption affinity of bacteriogenic birnessites for environmentally important trace metals is relatively well understood mechanistically, but the role of bacterial cells and extracellular polymeric substances appears to vary among trace metals. To assess the role of biomass definitively, comparison between metal sorption by biomass at high metal loadings in the presence and absence of birnessite is required. We investigated the biomass effect on Ni sorption through laboratory experiments utilizing the birnessite produced by the model bacterium, Pseudomonas putida. Surface excess measurements at pH 6?8 showed that birnessite significantly enhanced Ni sorption at high loadings (up to nearly 4-fold) relative to biomass alone. This apparent large difference in affinity for Ni between the organic and mineral components was confirmed by extended X-ray absorption fine structure spectroscopy, which revealed preferential Ni binding to birnessite cation vacancy sites. At pH >= 7, Ni sorption involved both adsorption and precipitation reactions. Our results thus support the view that the biofilm does not block reactive mineral surface sites; instead, the organic material contributes to metal sorption once high-affinity sites on the mineral are saturated.
Resumo:
OBJECTIVE: The measurement of cardiac output is a key element in the assessment of cardiac function. Recently, a pulse contour analysis-based device without need for calibration became available (FloTrac/Vigileo, Edwards Lifescience, Irvine, CA). This study was conducted to determine if there is an impact of the arterial catheter site and to investigate the accuracy of this system when compared with the pulmonary artery catheter using the bolus thermodilution technique (PAC). DESIGN: Prospective study. SETTING: The operating room of 1 university hospital. PARTICIPANTS: Twenty patients undergoing cardiac surgery. INTERVENTIONS: CO was determined in parallel by the use of the Flotrac/Vigileo systems in the radial and femoral position (CO_rad and CO_fem) and by PAC as the reference method. Data triplets were recorded at defined time points. The primary endpoint was the comparison of CO_rad and CO_fem, and the secondary endpoint was the comparison with the PAC. MEASUREMENTS AND MAIN RESULTS: Seventy-eight simultaneous data recordings were obtained. The Bland-Altman analysis for CO_fem and CO_rad showed a bias of 0.46 L/min, precision was 0.85 L/min, and the percentage error was 34%. The Bland-Altman analysis for CO_rad and PAC showed a bias of -0.35 L/min, the precision was 1.88 L/min, and the percentage error was 76%. The Bland-Altman analysis for CO_fem and PAC showed a bias of 0.11 L/min, the precision was 1.8 L/min, and the percentage error was 69%. CONCLUSION: The FloTrac/Vigileo system was shown to not produce exactly the same CO data when used in radial and femoral arteries, even though the percentage error was close to the clinically acceptable range. Thus, the impact of the introduction site of the arterial catheter is not negligible. The agreement with thermodilution was low.