52 resultados para ARTIFICIAL NOISE
Resumo:
Objective: Existing VADs are single-ventricle pumps needing anticoagulation. We developed a bi ventricular external assist device that reproduces the physiological heart muscle movement completely avoiding anticoagulants. Methods: The device has a carbon fibre skeleton fitting a 30-40 kg patient's heart, to which a Nitinol based artificial muscle is connected. The artificial muscle wraps both ventricles. The strength of the Nitinol fibres is amplified by a pivot articulation in contact with the ventricle wall. The fibres are electrically driven and a dedicated control unit has been developed. We assessed hemodynamic performances of this device using a previously described dedicated bench test. Volume ejected and pressure gradient has been measured with afterload ranging from 25 to 50mmHg. Results: With anafterload of 50mmHg the system has an ejection fraction (EF) of 10% on the right side and 8% on the left side. The system is able to generate a systolic ejection of 5,5 ml on the right side and 4,4 ml on the left side. With anafterload of 25mmHg the results are reduced of about 20%. The activation frequency is 80/minute resulting in a total volume displacement of 440 ml/minute on the right side and 352 ml/minute on the left side. Conclusions: The artificial muscle follows Starling's law as the ejected volume increases when afterload increases. These preliminary studies confirmed the possibility of improving the EF of a failing heart using artificial muscle for external cardiac compression. This device could be helpful in weaning CPB and/or for short-term cardio-circulatory support in paediatric population with cardiac failure.
Resumo:
Abstract The main objective of this work is to show how the choice of the temporal dimension and of the spatial structure of the population influences an artificial evolutionary process. In the field of Artificial Evolution we can observe a common trend in synchronously evolv¬ing panmictic populations, i.e., populations in which any individual can be recombined with any other individual. Already in the '90s, the works of Spiessens and Manderick, Sarma and De Jong, and Gorges-Schleuter have pointed out that, if a population is struc¬tured according to a mono- or bi-dimensional regular lattice, the evolutionary process shows a different dynamic with respect to the panmictic case. In particular, Sarma and De Jong have studied the selection pressure (i.e., the diffusion of a best individual when the only selection operator is active) induced by a regular bi-dimensional structure of the population, proposing a logistic modeling of the selection pressure curves. This model supposes that the diffusion of a best individual in a population follows an exponential law. We show that such a model is inadequate to describe the process, since the growth speed must be quadratic or sub-quadratic in the case of a bi-dimensional regular lattice. New linear and sub-quadratic models are proposed for modeling the selection pressure curves in, respectively, mono- and bi-dimensional regu¬lar structures. These models are extended to describe the process when asynchronous evolutions are employed. Different dynamics of the populations imply different search strategies of the resulting algorithm, when the evolutionary process is used to solve optimisation problems. A benchmark of both discrete and continuous test problems is used to study the search characteristics of the different topologies and updates of the populations. In the last decade, the pioneering studies of Watts and Strogatz have shown that most real networks, both in the biological and sociological worlds as well as in man-made structures, have mathematical properties that set them apart from regular and random structures. In particular, they introduced the concepts of small-world graphs, and they showed that this new family of structures has interesting computing capabilities. Populations structured according to these new topologies are proposed, and their evolutionary dynamics are studied and modeled. We also propose asynchronous evolutions for these structures, and the resulting evolutionary behaviors are investigated. Many man-made networks have grown, and are still growing incrementally, and explanations have been proposed for their actual shape, such as Albert and Barabasi's preferential attachment growth rule. However, many actual networks seem to have undergone some kind of Darwinian variation and selection. Thus, how these networks might have come to be selected is an interesting yet unanswered question. In the last part of this work, we show how a simple evolutionary algorithm can enable the emrgence o these kinds of structures for two prototypical problems of the automata networks world, the majority classification and the synchronisation problems. Synopsis L'objectif principal de ce travail est de montrer l'influence du choix de la dimension temporelle et de la structure spatiale d'une population sur un processus évolutionnaire artificiel. Dans le domaine de l'Evolution Artificielle on peut observer une tendence à évoluer d'une façon synchrone des populations panmictiques, où chaque individu peut être récombiné avec tout autre individu dans la population. Déjà dans les année '90, Spiessens et Manderick, Sarma et De Jong, et Gorges-Schleuter ont observé que, si une population possède une structure régulière mono- ou bi-dimensionnelle, le processus évolutionnaire montre une dynamique différente de celle d'une population panmictique. En particulier, Sarma et De Jong ont étudié la pression de sélection (c-à-d la diffusion d'un individu optimal quand seul l'opérateur de sélection est actif) induite par une structure régulière bi-dimensionnelle de la population, proposant une modélisation logistique des courbes de pression de sélection. Ce modèle suppose que la diffusion d'un individu optimal suit une loi exponentielle. On montre que ce modèle est inadéquat pour décrire ce phénomène, étant donné que la vitesse de croissance doit obéir à une loi quadratique ou sous-quadratique dans le cas d'une structure régulière bi-dimensionnelle. De nouveaux modèles linéaires et sous-quadratique sont proposés pour des structures mono- et bi-dimensionnelles. Ces modèles sont étendus pour décrire des processus évolutionnaires asynchrones. Différentes dynamiques de la population impliquent strategies différentes de recherche de l'algorithme résultant lorsque le processus évolutionnaire est utilisé pour résoudre des problèmes d'optimisation. Un ensemble de problèmes discrets et continus est utilisé pour étudier les charactéristiques de recherche des différentes topologies et mises à jour des populations. Ces dernières années, les études de Watts et Strogatz ont montré que beaucoup de réseaux, aussi bien dans les mondes biologiques et sociologiques que dans les structures produites par l'homme, ont des propriétés mathématiques qui les séparent à la fois des structures régulières et des structures aléatoires. En particulier, ils ont introduit la notion de graphe sm,all-world et ont montré que cette nouvelle famille de structures possède des intéressantes propriétés dynamiques. Des populations ayant ces nouvelles topologies sont proposés, et leurs dynamiques évolutionnaires sont étudiées et modélisées. Pour des populations ayant ces structures, des méthodes d'évolution asynchrone sont proposées, et la dynamique résultante est étudiée. Beaucoup de réseaux produits par l'homme se sont formés d'une façon incrémentale, et des explications pour leur forme actuelle ont été proposées, comme le preferential attachment de Albert et Barabàsi. Toutefois, beaucoup de réseaux existants doivent être le produit d'un processus de variation et sélection darwiniennes. Ainsi, la façon dont ces structures ont pu être sélectionnées est une question intéressante restée sans réponse. Dans la dernière partie de ce travail, on montre comment un simple processus évolutif artificiel permet à ce type de topologies d'émerger dans le cas de deux problèmes prototypiques des réseaux d'automates, les tâches de densité et de synchronisation.
Resumo:
AIMS: Many studies have suggested a close relationship between alcohol use disorder (AUD) and major depressive disorder (MDD). This study aimed to test whether the relationship between self-reported AUD and MDD was artificially strengthened by the diagnosis of MDD. This association was tested comparing relationships between alcohol use and AUD for depressive people and non-depressive people. METHODS: As part of the Cohort Study on Substance Use Risk Factors, 4352 male Swiss alcohol users in their early twenties answered questions concerning their alcohol use, AUD and MDD at two time points. Generalized linear models for cross-sectional and longitudinal associations were calculated. RESULTS: For cross-sectional associations, depressive participants reported a higher number of AUD symptoms (β = 0.743, P < 0.001) than non-depressive participants. Moreover, there was an interaction (β = -0.204, P = 0.001): the relationship between alcohol use and AUD was weaker for depressive participants rather than non-depressive participants. For longitudinal associations, there were almost no significant relationships between MDD at baseline and AUD at follow-up, but the interaction was still significant (β = -0.249, P < 0.001). CONCLUSION: MDD thus appeared to be a confounding variable in the relationship between alcohol use and AUD, and self-reported measures of AUD seemed to be overestimated by depressive people. This result brings into question the accuracy of self-reported measures of substance use disorders. Furthermore, it adds to the emerging debate about the usefulness of substance use disorder as a concept, when heavy substance use itself appears to be a sensitive and reliable indicator.
Resumo:
Reaching a consensus in terms of interchangeability and utility (i.e., disease detection/monitoring) of a medical device is the eventual aim of repeatability and agreement studies. The aim of the tolerance and relative utility indices described in this report is to provide a methodology to compare change in clinical measurement noise between different populations (repeatability) or measurement methods (agreement), so as to highlight problematic areas. No longitudinal data are required to calculate these indices. Both indices establish a metric of least to most effected across all parameters to facilitate comparison. If validated, these indices may prove useful tools when combining reports and forming the consensus required in the validation process for software updates and new medical devices.
Resumo:
OBJECTIVES: To compare physiological noise contributions in cerebellar and cerebral regions of interest in high-resolution functional magnetic resonance imaging (fMRI) data acquired at 7T, to estimate the need for physiological noise removal in cerebellar fMRI. MATERIALS AND METHODS: Signal fluctuations in high resolution (1 mm isotropic) 7T fMRI data were attributed to one of the following categories: task-induced BOLD changes, slow drift, signal changes correlated with the cardiac and respiratory cycles, signal changes related to the cardiac rate and respiratory volume per unit of time or other. [Formula: see text] values for all categories were compared across regions of interest. RESULTS: In this high-resolution data, signal fluctuations related to the phase of the cardiac cycle and cardiac rate were shown to be significant, but comparable between cerebellar and cerebral regions of interest. However, respiratory related signal fluctuations were increased in the cerebellar regions, with explained variances that were up to 80 % higher than for the primary motor cortex region. CONCLUSION: Even at a millimetre spatial resolution, significant correlations with both cardiac and respiratory RETROICOR components were found in all healthy volunteer data. Therefore, physiological noise correction is highly likely to improve the temporal signal-to-noise ratio (SNR) for cerebellar fMRI at 7T, even at high spatial resolution.
Resumo:
NlmCategory="UNASSIGNED">A version of cascaded systems analysis was developed specifically with the aim of studying quantum noise propagation in x-ray detectors. Signal and quantum noise propagation was then modelled in four types of x-ray detectors used for digital mammography: four flat panel systems, one computed radiography and one slot-scan silicon wafer based photon counting device. As required inputs to the model, the two dimensional (2D) modulation transfer function (MTF), noise power spectra (NPS) and detective quantum efficiency (DQE) were measured for six mammography systems that utilized these different detectors. A new method to reconstruct anisotropic 2D presampling MTF matrices from 1D radial MTFs measured along different angular directions across the detector is described; an image of a sharp, circular disc was used for this purpose. The effective pixel fill factor for the FP systems was determined from the axial 1D presampling MTFs measured with a square sharp edge along the two orthogonal directions of the pixel lattice. Expectation MTFs were then calculated by averaging the radial MTFs over all possible phases and the 2D EMTF formed with the same reconstruction technique used for the 2D presampling MTF. The quantum NPS was then established by noise decomposition from homogenous images acquired as a function of detector air kerma. This was further decomposed into the correlated and uncorrelated quantum components by fitting the radially averaged quantum NPS with the radially averaged EMTF(2). This whole procedure allowed a detailed analysis of the influence of aliasing, signal and noise decorrelation, x-ray capture efficiency and global secondary gain on NPS and detector DQE. The influence of noise statistics, pixel fill factor and additional electronic and fixed pattern noises on the DQE was also studied. The 2D cascaded model and decompositions performed on the acquired images also enlightened the observed quantum NPS and DQE anisotropy.