77 resultados para ALVEOLAR MACROPHAGE PHAGOCYTOSIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The lung possesses specific transport systems that intra- and extracellularly maintain salt and fluid balance necessary for its function. At birth, the lungs rapidly transform into a fluid (Na(+))-absorbing organ to enable efficient gas exchange. Alveolar fluid clearance, which mainly depends on sodium transport in alveolar epithelial cells, is an important mechanism by which excess water in the alveoli is reabsorbed during the resolution of pulmonary edema. In this review, we will focus and summarize on the role of ENaC in alveolar lung liquid clearance and discuss recent data from mouse models with altered activity of epithelial sodium channel function in the lung, and more specifically in alveolar fluid clearance. Recent data studying mice with hyperactivity of ENaC or mice with reduced ENaC activity clearly illustrate the impaired lung fluid clearance in these adult mice. Further understanding of the physiological role of ENaC and its regulatory proteins implicated in salt and water balance in the alveolar cells may therefore help to develop new therapeutic strategies to improve gas exchange in pulmonary edema.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interleukin-10 (IL-10) has been reported to inhibit nitric oxide (NO) synthesis and microbicidal activity of interferon-gamma (IFN-gamma)-stimulated macrophages (M phi) by preventing the secretion of tumor necrosis factor-alpha (TNF-alpha) which serves as an autocrine activating signal. We have examined the effects of recombinant IL-10 on the capacity of IFN-gamma together with exogenous TNF-alpha to induce NO synthesis by bone marrow-derived M phi. Under these conditions and in contrast to its reported deactivating potential, IL-10 strongly enhanced NO synthesis measured as nitrite (NO2-) release (half maximal stimulation at approximately 10 U/ml). IL-10 further increased NO2- production by M phi stimulated in the presence of optimal concentrations of prostaglandin E2, a positive modulator of M phi activation by IFN-gamma/TNF-alpha. Increased steady state levels of NO synthase mRNA were observed in 4-h IFN-gamma/TNF-alpha cultures and enhanced NO2(-)-release was evident 24 h but not 48 h after stimulation. These results suggest that the effects of IL-10 on M phi function are more complex than previously recognized.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study was designed to evaluate the potential of gas-filled microbubbles (MB) to be internalized by antigen-presenting cells (APC). Fluorescently labeled MB were prepared, thus permitting to track binding to, and internalization in, APC. Both human and mouse cells, including monocytes and dendritic cells (DC), prove capable to phagocyte MB in vitro. Observation by confocal laser scanning microscopy showed that interaction between MB and target cells resulted in a rapid internalization in cellular compartments and to a lesser extent in the cytoplasm. Capture of MB by APC resulted in phagolysosomal targeting as verified by double staining with anti-lysosome-associated membrane protein-1 monoclonal antibody and decrease of internalization by phagocytosis inhibitors. Fluorescent MB injected subcutaneously (s.c.) in mice were found to be associated with CD11c(+)DC in lymph nodes draining the injection sites 24 h after administration. Altogether, our study demonstrates that MB can successfully target APC both in vitro and in vivo, and thus may serve as a potent Ag delivery system without requirement for ultrasound-based sonoporation. This adds to the potential of applications of MB already extensively used for diagnostic imaging in humans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adherent cells from murine long-term marrow cultures (LTMC) were examined for presence of mRNA for granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin 3 (Il-3). Six hours after medium replacement, GM-CSF mRNA was detected but was no longer detectable 24 h after feeding; Il-3 mRNA was not detected at any time. Neutralizing antibodies against these factors had no effect on hemopoiesis. Exogenous Il-3 increased cell production, notably mature erythroid progenitors, whereas GM-CSF had little long-term effect even at high concentrations. Furthermore, GM-CSF appeared to be specifically removed from the medium, whereas virtually all of the Il-3 could be recovered under identical incubation conditions. These results show that Il-3 is not required for maintaining long-term hemopoiesis in vitro, whereas the precise role of GM-CSF in this system remains unclear.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Circulating monocytes, as dendritic cell and macrophage precursors, exhibit several functions usually associated with antigen-presenting cells, such as phagocytosis and presence of endosomal/lysosomal degradative compartments particularly enriched in Lamp-1, MHC class II molecules, and other proteins related to antigen processing and MHC class II loading [MHC class II compartments (MIICs)]. Ultrastructural analysis of these organelles indicates that, differently from the multivesicular bodies present in dendritic cells, in monocytes the MIICs are characterized by a single perimetral membrane surrounding an electron-dense core. Analysis of their content reveals enrichment in myeloperoxidase, an enzyme classically associated with azurophilic granules in granulocytes and mast cell secretory lysosomes. Elevation in intracellular free calcium levels in monocytes induced secretion of beta-hexosaminidase, cathepsins, and myeloperoxidase in the extracellular milieu; surface up-regulation of MHC class II molecules; and appearance of lysosomal resident proteins. The Ca(2+)-regulated surface transport mechanism of MHC class II molecules observed in monocytes is different from the tubulovesicular organization of the multivesicular bodies previously reported in dendritic cells and macrophages. Hence, in monocytes, MHC class II-enriched organelles combine degradative functions typical of lysosomes and regulated secretion typical of secretory lysosomes. More important, Ca(2+)-mediated up-regulation of surface MHC class II molecules is accompanied by extracellular release of lysosomal resident enzymes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glioblastoma multiforme (GBM) is the most malignant variant of human glial tumors. A prominent feature of this tumor is the occurrence of necrosis and vascular proliferation. The regulation of glial neovascularization is still poorly understood and the characterization of factors involved in this process is of major clinical interest. Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine released by leukocytes and by a variety of cells outside of the immune system. Recent work has shown that MIF may function to regulate cellular differentiation and proliferation in normal and tumor-derived cell lines, and may also contribute to the neovascularization of tumors. Our immunohistological analysis of MIF distribution in GBM tissues revealed the strong MIF protein accumulation in close association with necrotic areas and in tumor cells surrounding blood vessels. In addition, MIF expression was frequently associated with the presence of the tumor-suppressor gene p53. To substantiate the concept that MIF might be involved in the regulation of angiogenesis in GBM, we analyzed the MIF gene and protein expression under hypoxic and hypoglycemic stress conditions in vitro. Northern blot analysis showed a clear increase of MIF mRNA after hypoxia and hypoglycemia. We could also demonstrate that the increase of MIF transcripts on hypoxic stress can be explained by a profound transcriptional activation of the MIF gene. In parallel to the increase of MIF transcripts, we observed a significant rise in extracellular MIF protein on angiogenic stimulation. The data of our preliminary study suggest that the up-regulation of MIF expression during hypoxic and hypoglycemic stress might play a critical role for the neovascularization of glial tumors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sodium transport via epithelial sodium channels (ENaC) expressed in alveolar epithelial cells (AEC) provides the driving force for removal of fluid from the alveolar space. The membrane-bound channel-activating protease 1 (CAP1/Prss8) activates ENaC in vitro in various expression systems. To study the role of CAP1/Prss8 in alveolar sodium transport and lung fluid balance in vivo, we generated mice lacking CAP1/Prss8 in the alveolar epithelium using conditional Cre-loxP-mediated recombination. Deficiency of CAP1/Prss8 in AEC induced in vitro a 40% decrease in ENaC-mediated sodium currents. Sodium-driven alveolar fluid clearance (AFC) was reduced in CAP1/Prss8-deficient mice, due to a 48% decrease in amiloride-sensitive clearance, and was less sensitive to beta(2)-agonist treatment. Intra-alveolar treatment with neutrophil elastase, a soluble serine protease activating ENaC at the cell surface, fully restored basal AFC and the stimulation by beta(2)-agonists. Finally, acute volume-overload increased alveolar lining fluid volume in CAP1/Prss8-deficient mice. This study reveals that CAP1 plays a crucial role in the regulation of ENaC-mediated alveolar sodium and water transport and in mouse lung fluid balance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Macrophage migration inhibitory factor (MIF) is a homotrimeric multifunctional proinflammatory cytokine that has been implicated in the pathogenesis of several inflammatory and autoimmune diseases. Current therapeutic strategies for targeting MIF focus on developing inhibitors of its tautomerase activity or modulating its biological activities using anti-MIF neutralizing antibodies. Herein we report a new class of isothiocyanate (ITC)-based irreversible inhibitors of MIF. Modification by benzyl isothiocyanate (BITC) and related analogues occurred at the N-terminal catalytic proline residue without any effect on the oligomerization state of MIF. Different alkyl and arylalkyl ITCs modified MIF with nearly the same efficiency as BITC. To elucidate the mechanism of action, we performed detailed biochemical, biophysical, and structural studies to determine the effect of BITC and its analogues on the conformational state, quaternary structure, catalytic activity, receptor binding, and biological activity of MIF. Light scattering, analytical ultracentrifugation, and NMR studies on unmodified and ITC-modified MIF demonstrated that modification of Pro1 alters the tertiary, but not the secondary or quaternary, structure of the trimer without affecting its thermodynamic stability. BITC induced drastic effects on the tertiary structure of MIF, in particular residues that cluster around Pro1 and constitute the tautomerase active site. These changes in tertiary structure and the loss of catalytic activity translated into a reduction in MIF receptor binding activity, MIF-mediated glucocorticoid overriding, and MIF-induced Akt phosphorylation. Together, these findings highlight the role of tertiary structure in modulating the biochemical and biological activities of MIF and present new opportunities for modulating MIF biological activities in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intensive research is devoted to unravel the neurobiological mechanisms mediating adult hippocampal neurogenesis, its regulation by antidepressants, and its behavioral consequences. Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine that is expressed in the CNS, where its function is unknown. Here, we show, for the first time, the relevance of MIF expression for adult hippocampal neurogenesis. We identify MIF expression in neurogenic cells (in stem cells, cells undergoing proliferation, and in newly proliferated cells undergoing maturation) in the subgranular zone of the rodent dentate gyrus. A causal function for MIF in cell proliferation was shown using genetic (MIF gene deletion) and pharmacological (treatment with the MIF antagonist Iso-1) approaches. Behaviorally, genetic deletion of MIF resulted in increased anxiety- and depression-like behaviors, as well as of impaired hippocampus-dependent memory. Together, our studies provide evidence supporting a pivotal function for MIF in both basal and antidepressant-stimulated adult hippocampal cell proliferation. Moreover, loss of MIF results in a behavioral phenotype that, to a large extent, corresponds with alterations predicted to arise from reduced hippocampal neurogenesis. These findings underscore MIF as a potentially relevant molecular target for the development of treatments linked to deficits in neurogenesis, as well as to problems related to anxiety, depression, and cognition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Macrophage migration inhibitory factor (MIF), a proinflammatory cytokine, is considered an attractive therapeutic target in multiple inflammatory and autoimmune disorders. In addition to its known biologic activities, MIF can also function as a tautomerase. Several small molecules have been reported to be effective inhibitors of MIF tautomerase activity in vitro. Herein we employed a robust activity-based assay to identify different classes of novel inhibitors of the catalytic and biological activities of MIF. Several novel chemical classes of inhibitors of the catalytic activity of MIF with IC(50) values in the range of 0.2-15.5 microm were identified and validated. The interaction site and mechanism of action of these inhibitors were defined using structure-activity studies and a battery of biochemical and biophysical methods. MIF inhibitors emerging from these studies could be divided into three categories based on their mechanism of action: 1) molecules that covalently modify the catalytic site at the N-terminal proline residue, Pro(1); 2) a novel class of catalytic site inhibitors; and finally 3) molecules that disrupt the trimeric structure of MIF. Importantly, all inhibitors demonstrated total inhibition of MIF-mediated glucocorticoid overriding and AKT phosphorylation, whereas ebselen, a trimer-disrupting inhibitor, additionally acted as a potent hyperagonist in MIF-mediated chemotactic migration. The identification of biologically active compounds with known toxicity, pharmacokinetic properties, and biological activities in vivo should accelerate the development of clinically relevant MIF inhibitors. Furthermore, the diversity of chemical structures and mechanisms of action of our inhibitors makes them ideal mechanistic probes for elucidating the structure-function relationships of MIF and to further determine the role of the oligomerization state and catalytic activity of MIF in regulating the function(s) of MIF in health and disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diffuse alveolar hemorrhage (DAH) is defined by the presence of red blood cells originating from the lung capillaries or venules within the alveoli. The diagnosis is established on clinical features, radiological pattern, and especially bronchoalveolar lavage. Diffuse alveolar hemorrhage may have many immune or non-immune causes. Immune causes of DAH include vasculitides, connective tissue diseases, especially systemic lupus erythematosus, and antiglomerular basement membrane antibody disease (Goodpasture's syndrome). Treatment is both supportive and causal, often based on high dose corticosteroids and immunosuppressive therapy (especially intravenous cyclophosphamide). Plasma exchanges are performed in antiglomerular basement membrane antibody disease and systemic lupus erythematosus, and are considered in systemic vasculitis. Non-immune causes of DAH mainly include heart diseases, coagulation disorders, infections, drug toxicities and idiopathic DAH. Treatment of non-immune DAH is that of its cause. Whatever the cause, DAH is an emergency requiring prompt assessment and early treatment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Macrophage-mediated chronic inflammation is mechanistically linked to insulin resistance and atherosclerosis. Although arginase I is considered antiinflammatory, the role of arginase II (Arg-II) in macrophage function remains elusive. This study characterizes the role of Arg-II in macrophage inflammatory responses and its impact on obesity-linked type II diabetes mellitus and atherosclerosis. METHODS AND RESULTS: In human monocytes, silencing Arg-II decreases the monocytes' adhesion to endothelial cells and their production of proinflammatory mediators stimulated by oxidized low-density lipoprotein or lipopolysaccharides, as evaluated by real-time quantitative reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay. Macrophages differentiated from bone marrow cells of Arg-II-deficient (Arg-II(-/-)) mice express lower levels of lipopolysaccharide-induced proinflammatory mediators than do macrophages of wild-type mice. Importantly, reintroducing Arg-II cDNA into Arg-II(-/-) macrophages restores the inflammatory responses, with concomitant enhancement of mitochondrial reactive oxygen species. Scavenging of reactive oxygen species by N-acetylcysteine prevents the Arg-II-mediated inflammatory responses. Moreover, high-fat diet-induced infiltration of macrophages in various organs and expression of proinflammatory cytokines in adipose tissue are blunted in Arg-II(-/-) mice. Accordingly, Arg-II(-/-) mice reveal lower fasting blood glucose and improved glucose tolerance and insulin sensitivity. Furthermore, apolipoprotein E (ApoE)-deficient mice with Arg-II deficiency (ApoE(-/-)Arg-II(-/-)) display reduced lesion size with characteristics of stable plaques, such as decreased macrophage inflammation and necrotic core. In vivo adoptive transfer experiments reveal that fewer donor ApoE(-/-)Arg-II(-/-) than ApoE(-/-)Arg-II(+/+) monocytes infiltrate into the plaque of ApoE(-/-)Arg-II(+/+) mice. Conversely, recipient ApoE(-/-)Arg-II(-/-) mice accumulate fewer donor monocytes than do recipient ApoE(-/-)Arg-II(+/+) animals. CONCLUSIONS: Arg-II promotes macrophage proinflammatory responses through mitochondrial reactive oxygen species, contributing to insulin resistance and atherogenesis. Targeting Arg-II represents a potential therapeutic strategy in type II diabetes mellitus and atherosclerosis. (J Am Heart Assoc. 2012;1:e000992 doi: 10.1161/JAHA.112.000992.).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two common lung-related complications in the neonate are respiratory distress syndrome, which is associated with a failure to generate low surface tension at the air-liquid interface because of pulmonary surfactant insufficiency, and bronchopulmonary dysplasia (BPD), a chronic lung injury with reduced alveolarization. Surfactant phosphatidylcholine (PC) molecular species composition during alveolarization has not been examined. Mass spectrometry analysis of bronchoalveolar lavage fluid of rodents and humans revealed significant changes in surfactant PC during alveolar development and BPD. In rats, total PC content rose during alveolarization, which was caused by an increase in palmitoylmyristoyl-PC (16:0/14:0PC) concentration. Furthermore, two animal models of BPD exhibited a specific reduction in 16:0/14:0PC content. In humans, 16:0/14:0PC content was specifically decreased in patients with BPD and emphysema compared with patients without alveolar pathology. Palmitoylmyristoyl-PC content increased with increasing intrinsic surfactant curvature, suggesting that it affects surfactant function in the septating lung. The changes in acyl composition of PC were attributed to type II cells producing an altered surfactant during alveolar development. These data are compatible with extracellular surfactant 16:0/14:0PC content being an indicator of alveolar architecture of the lung.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cutaneous Leishmaniasis (CL) caused by Leishmania aethiopica is a public health and social problem with a sequel of severe and mutilating skin lesions. It is manifested in three forms: localized CL (LCL), mucosal CL (MCL) and diffuse CL (DCL). Unresponsiveness to sodium stibogluconate (Sb(V)) is common in Ethiopian CL patients. Using the amastigote-macrophage in vitro model the susceptibility of 24 clinical isolates of L. aethiopica derived from untreated patients was investigated. Eight strains of LCL, 9 of MCL, and 7 of DCL patients together with a reference strain (MHOM/ET/82/117/82) were tested against four antileishmanial drugs: amphotericin B, miltefosine, Sb(V) and paromomycin. In the same order of drugs, IC(50) (μg/ml±SD) values for the 24 strains tested were 0.16±0.18, 5.88±4.79, 10.23±8.12, and 13.63±18.74. The susceptibility threshold of isolates originating from the 3 categories of patients to all 4 drugs was not different (p>0.05). Maximal efficacy was superior for miltefosine across all the strains. Further susceptibility test could validate miltefosine as a potential alternative drug in cases of sodium stibogluconate treatment failure in CL patients.