217 resultados para 3D cell models
Resumo:
Vascular integrins are essential regulators and mediators of physiological and pathological angiogenesis, including tumor angiogenesis. Integrins provide the physical interaction with the extracellular matrix (ECM) necessary for cell adhesion, migration and positioning, and induce signaling events essential for cell survival, proliferation and differentiation. Integrins preferentially expressed on neovascular endothelial cells, such as alphaVbeta3 and alpha5beta1, are considered as relevant targets for anti-angiogenic therapies. Anti-integrin antibodies and small molecular integrin inhibitors suppress angiogenesis and tumor progression in many animal models, and are currently tested in clinical trials as anti-angiogenic agents. Cyclooxygense-2 (COX-2), a key enzyme in the synthesis of prostaglandins and thromboxans, is highly up-regulated in tumor cells, stromal cells and angiogenic endothelial cells during tumor progression. Recent experiments have demonstrated that COX-2 promotes tumor angiogenesis. Chronic intake of nonsteroidal anti-inflammatory drugs and COX-2 inhibitors significantly reduces the risk of cancer development, and this effect may be due, at least in part, to the inhibition of tumor angiogenesis. Endothelial cell COX-2 promotes integrin alphaVbeta3-mediated endothelial cell adhesion, spreading, migration and angiogenesis through the prostaglandin-cAMP-PKA-dependent activation of the small GTPase Rac. In this article, we review the role of integrins and COX-2 in angiogenesis, their cross talk, and discuss implications relevant to their targeting to suppress tumor angiogenesis.
Resumo:
Adherens junctions (AJs) and cell polarity complexes are key players in the establishment and maintenance of apical-basal cell polarity. Loss of AJs or basolateral polarity components promotes tumor formation and metastasis. Recent studies in vertebrate models show that loss of AJs or loss of the basolateral component Scribble (Scrib) cause deregulation of the Hippo tumor suppressor pathway and hyperactivation of its downstream effectors Yes-associated protein (YAP) and Transcriptional coactivator with PDZ-binding motif (TAZ). However, whether AJs and Scrib act through the same or independent mechanisms to regulate Hippo pathway activity is not known. Here, we dissect how disruption of AJs or loss of basolateral components affect the activity of the Drosophila YAP homolog Yorkie (Yki) during imaginal disc development. Surprisingly, disruption of AJs and loss of basolateral proteins produced very different effects on Yki activity. Yki activity was cell-autonomously decreased but non-cell-autonomously elevated in tissues where the AJ components E-cadherin (E-cad) or α-catenin (α-cat) were knocked down. In contrast, scrib knockdown caused a predominantly cell-autonomous activation of Yki. Moreover, disruption of AJs or basolateral proteins had different effects on cell polarity and tissue size. Simultaneous knockdown of α-cat and scrib induced both cell-autonomous and non-cell-autonomous Yki activity. In mammalian cells, knockdown of E-cad or α-cat caused nuclear accumulation and activation of YAP without overt effects on Scrib localization and vice versa. Therefore, our results indicate the existence of multiple, genetically separable inputs from AJs and cell polarity complexes into Yki/YAP regulation.
Resumo:
Combustion-derived and manufactured nanoparticles (NPs) are known to provoke oxidative stress and inflammatory responses in human lung cells; therefore, they play an important role during the development of adverse health effects. As the lungs are composed of more than 40 different cell types, it is of particular interest to perform toxicological studies with co-cultures systems, rather than with monocultures of only one cell type, to gain a better understanding of complex cellular reactions upon exposure to toxic substances. Monocultures of A549 human epithelial lung cells, human monocyte-derived macrophages and monocyte-derived dendritic cells (MDDCs) as well as triple cell co-cultures consisting of all three cell types were exposed to combustion-derived NPs (diesel exhaust particles) and to manufactured NPs (titanium dioxide and single-walled carbon nanotubes). The penetration of particles into cells was analysed by transmission electron microscopy. The amount of intracellular reactive oxygen species (ROS), the total antioxidant capacity (TAC) and the production of tumour necrosis factor (TNF)-a and interleukin (IL)-8 were quantified. The results of the monocultures were summed with an adjustment for the number of each single cell type in the triple cell co-culture. All three particle types were found in all cell and culture types. The production of ROS was induced by all particle types in all cell cultures except in monocultures of MDDCs. The TAC and the (pro-)inflammatory reactions were not statistically significantly increased by particle exposure in any of the cell cultures. Interestingly, in the triple cell co-cultures, the TAC and IL-8 concentrations were lower and the TNF-a concentrations were higher than the expected values calculated from the monocultures. The interplay of different lung cell types seems to substantially modulate the oxidative stress and the inflammatory responses after NP exposure. [Authors]
Resumo:
BACKGROUND: VeriStrat(®) is a serum proteomic test used to determine whether patients with advanced non-small cell lung cancer (NSCLC) who have already received chemotherapy are likely to have good or poor outcomes from treatment with gefitinib or erlotinib. The main objective of our retrospective study was to evaluate the role of VS as a marker of overall survival (OS) in patients treated with erlotinib and bevacizumab in the first line. PATIENTS AND METHODS: Patients were pooled from two phase II trials (SAKK19/05 and NTR528). For survival analyses, a log-rank test was used to determine if there was a statistically significant difference between groups. The hazard ratio (HR) of any separation was assessed using Cox proportional hazards models. RESULTS: 117 patients were analyzed. VeriStrat classified patients into two groups which had a statistically significant difference in duration of OS (p=0.0027, HR=0.480, 95% confidence interval: 0.294-0.784). CONCLUSION: VeriStrat has a prognostic role in patients with advanced, nonsquamous NSCLC treated with erlotinib and bevacizumab in the first line. Further work is needed to study the predictive role of VeriStrat for erlotinib and bevacizumab in chemotherapy-untreated patients.
Resumo:
Previous clinical observations and data from mouse models with defects in lipid metabolism suggested that epineurial adipocytes may play a role in peripheral nervous system myelination. We have used adipocyte-specific Lpin1 knockout mice to characterize the consequences of the presence of impaired epineurial adipocytes on the myelinating peripheral nerve. Our data revealed that the capacity of Schwann cells to establish myelin, and the functional properties of peripheral nerves, were not affected by compromised epineurial adipocytes in adipocyte-specific Lpin1 knockout mice. To evaluate the possibility that Lpin1-negative adipocytes are still able to support endoneurial Schwann cells, we also characterized sciatic nerves from mice carrying epiblast-specific deletion of peroxisome proliferator-activated receptor gamma, which develop general lipoatrophy. Interestingly, even the complete loss of adipocytes in the epineurium of peroxisome proliferator-activated receptor gamma knockout mice did not lead to detectable defects in Schwann cell myelination. However, probably as a consequence of their hyperglycemia, these mice have reduced nerve conduction velocity, thus mimicking the phenotype observed under diabetic condition. Together, our data indicate that while adipocytes, as regulators of lipid and glucose homeostasis, play a role in nerve function, their presence in epineurium is not essential for establishment or maintenance of proper myelin.
Resumo:
The NLRP3 inflammasome acts as a danger signal sensor that triggers and coordinates the inflammatory response upon infectious insults or tissue injury and damage. However, the role of the NLRP3 inflammasome in natural killer (NK) cell-mediated control of tumor immunity is poorly understood. Here, we show in a model of chemical-induced carcinogenesis and a series of experimental and spontaneous metastases models that mice lacking NLRP3 display significantly reduced tumor burden than control wild-type (WT) mice. The suppression of spontaneous and experimental tumor metastases and methylcholanthrene (MCA)-induced sarcomas in mice deficient for NLRP3 was NK cell and IFN-γ-dependent. Focusing on the amenable B16F10 experimental lung metastases model, we determined that expression of NLRP3 in bone marrow-derived cells was necessary for optimal tumor metastasis. Tumor-driven expansion of CD11b(+)Gr-1(intermediate) (Gr-1(int)) myeloid cells within the lung tumor microenvironment of NLRP3(-/-) mice was coincident with increased lung infiltrating activated NK cells and an enhanced antimetastatic response. The CD11b(+)Gr-1(int) myeloid cells displayed a unique cell surface phenotype and were characterized by their elevated production of CCL5 and CXCL9 chemokines. Adoptive transfer of this population into WT mice enhanced NK cell numbers in, and suppression of, B16F10 lung metastases. Together, these data suggested that NLRP3 is an important suppressor of NK cell-mediated control of carcinogenesis and metastases and identify CD11b(+)Gr-1(int) myeloid cells that promote NK cell antimetastatic function. Cancer Res; 72(22); 5721-32. ©2012 AACR.
Resumo:
In contrast to mice from the majority of inbred strains, BALB mice develop aberrant Th2 responses and suffer progressive disease after infection with Leishmania major. These outcomes depend on the production of Interleukin 4, during the first 2 d of infection, by CD4+ T cells that express the Vbeta4-Valpha8 T cell receptors specific for a dominant I-A(d) restricted epitope of the LACK antigen from L. major. In contrast to this well established role of IL-4 in Th2 cell maturation, we have recently shown that, when limited to the initial period of activation of dendritic cells by L. major preceding T cell priming, IL-4 directs DCs to produce IL-12, promotes Th1 cell maturation and resistance to L. major in otherwise susceptible BALB/c mice. Thus, the antagonistic effects that IL-4 can have on Th cell development depend upon the nature of the cells (DCs or primed T cells) targeted for IL-4 signaling.
Resumo:
Stem cell antigen-1 (Sca-1) has been used to identify cardiac stem cells in the mouse heart. To investigate the function of Sca-1 in aging and during the cardiac adaptation to stress, we used Sca-1-deficient mice. These mice developed dilated cardiomyopathy [end-diastolic left ventricular diameter at 18 wk of age: wild-type (WT) mice, 4.2 mm ± 0.3; Sca-1-knockout (Sca-1-KO) mice, 4.6 mm ± 0.1; ejection fraction: WT mice, 51.1 ± 2.7%; Sca-1-KO mice, 42.9 ± 2.7%]. Furthermore, the hearts of mice lacking Sca-1 demonstrated exacerbated susceptibility to pressure overload [ejection fraction after transaortic constriction (TAC): WT mice, 43.5 ± 3.2%; Sca-1-KO mice, 30.8% ± 4.0] and increased apoptosis, as shown by the 2.5-fold increase in TUNEL(+) cells in Sca-1-deficient hearts under stress. Sca-1 deficiency affected primarily the nonmyocyte cell fraction. Indeed, the number of Nkx2.5(+) nonmyocyte cells, which represent a population of cardiac precursor cells (CPCs), was 2-fold smaller in Sca-1 deficient neonatal hearts. In vitro, the ability of CPCs to differentiate into cardiomyocytes was not affected by Sca-1 deletion. In contrast, these cells demonstrated unrestricted differentiation into cardiomyocytes. Interestingly, proliferation of cardiac nonmyocyte cells in response to stress, as judged by BrdU incorporation, was higher in mice lacking Sca-1 (percentages of BrdU(+) cells in the heart after TAC: WT mice, 4.4 ± 2.1%; Sca-1-KO mice, 19.3 ± 4.2%). These data demonstrate the crucial role of Sca-1 in the maintenance of cardiac integrity and suggest that Sca-1 restrains spontaneous differentiation in the precursor population. The absence of Sca-1 results in uncontrolled precursor recruitment, exhaustion of the precursor pool, and cardiac dysfunction.
Resumo:
The aryl hydrocarbon receptor (AhR) is involved in a wide variety of biological and toxicological responses, including neuroendocrine signaling. Due to the complexity of neuroendocrine pathways in e.g. the hypothalamus and pituitary, there are limited in vitro models available despite the strong demand for such systems to study and predict neuroendocrine effects of chemicals. In this study, the applicability of the AhR-expressing rat hypothalamic GnV-3 cell line was investigated as a novel model to screen for neuroendocrine effects of AhR ligands using 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) as reference compound. The qRT-PCR analyses demonstrated the presence of several sets of neurotransmitter receptors in the GnV-3 cells. TCDD (10nM) altered neurotransmitter signaling by up-regulation of glutamate (Grik2), gamma-amino butyric acid (Gabra2) and serotonin (Ht2C) receptor mRNA levels. However, no significant changes in basal and serotonin-evoked intracellular Ca(2+) concentration ([Ca(2+)]i) or serotonin release were observed. On the other hand, TCDD de-regulated period circadian protein homolog 1 (Per1) and gonadotropin releasing hormone (Gnrh) mRNA levels within a 24-h time period. Both Per1 and Gnrh genes displayed a similar mRNA expression pattern in GnV-3 cells. Moreover, the involvement of AhR in TCDD-induced alteration of Neuropeptide Y (Npy) gene expression was found and confirmed by using siRNA targeted against Ahr in GnV-3 cells. Overall, the combined results demonstrate that GnV-3 cells may be a suitable model to predict some mechanisms of action and effects of AhR ligands in the hypothalamus.
Resumo:
To study the interaction of T cell receptor with its ligand, a complex of a major histocompatibility complex molecule and a peptide, we derived H-2Kd-restricted cytolytic T lymphocyte clones from mice immunized with a Plasmodium berghei circumsporozoite peptide (PbCS) 252-260 (SYIPSAEKI) derivative containing photoreactive Nepsilon-[4-azidobenzoyl] lysine in place of Pro-255. This residue and Lys-259 were essential parts of the epitope recognized by these clones. Most of the clones expressed BV1S1A1 encoded beta chains along with specific complementary determining region (CDR) 3beta regions but diverse alpha chain sequences. Surprisingly, all T cell receptors were preferentially photoaffinity labeled on the alpha chain. For a representative T cell receptor, the photoaffinity labeled site was located in the Valpha C-strand. Computer modeling suggested the presence of a hydrophobic pocket, which is formed by parts of the Valpha/Jalpha C-, F-, and G-strands and adjacent CDR3alpha residues and structured to be able to avidly bind the photoreactive ligand side chain. We previously found that a T cell receptor specific for a PbCS peptide derivative containing this photoreactive side chain in position 259 similarly used a hydrophobic pocket located between the junctional CDR3 loops. We propose that this nonpolar domain in these locations allow T cell receptors to avidly and specifically bind epitopes containing non-peptidic side chains.
Resumo:
The lymphatic vascular system, the body's second vascular system present in vertebrates, has emerged in recent years as a crucial player in normal and pathological processes. It participates in the maintenance of normal tissue fluid balance, the immune functions of cellular and antigen trafficking and absorption of fatty acids and lipid-soluble vitamins in the gut. Recent scientific discoveries have highlighted the role of lymphatic system in a number of pathologic conditions, including lymphedema, inflammatory diseases, and tumor metastasis. Development of genetically modified animal models, identification of lymphatic endothelial specific markers and regulators coupled with technological advances such as high-resolution imaging and genome-wide approaches have been instrumental in understanding the major steps controlling growth and remodeling of lymphatic vessels. This review highlights the recent insights and developments in the field of lymphatic vascular biology.
Resumo:
Deficiency of protease-activated receptor-2 (PAR2) modulates inflammation in several models of inflammatory and autoimmune disease, although the underlying mechanism(s) are not understood. PAR2 is expressed on endothelial and immune cells, and is implicated in dendritic cell (DC) differentiation. We investigated in vivo the impact of PAR2 activation on DCs and T cells in PAR2 wild-type (WT) and knockout (KO) mice using a specific PAR2 agonist peptide (AP2). PAR2 activation significantly increased the frequency of mature CD11c(high) DCs in draining lymph nodes 24 hr after AP2 administration. Furthermore, these DCs exhibited increased expression of major histocompatibility complex (MHC) class II and CD86. A significant increase in activated (CD44(+) CD62(-)) CD4(+) and CD8(+) T-cell frequencies was also observed in draining lymph nodes 48 hr after AP2 injection. No detectable change in DC or T-cell activation profiles was observed in the spleen. The influence of PAR2 signalling on antigen transport to draining lymph nodes was assessed in the context of delayed-type hypersensitivity. PAR2 WT mice that were sensitized by skin-painting with fluorescein isothiocyanate (FITC) to induce delayed-type hypersensitivity possessed elevated proportion of FITC(+) DCs in draining lymph nodes 24 hr after FITC painting when compared with PAR2 KO mice (0.95% versus 0.47% of total lymph node cells). Collectively, these results demonstrate that PAR2 signalling promotes DC trafficking to the lymph nodes and subsequent T-cell activation, and thus provides an explanation for the pro-inflammatory effect of PAR2 in animal models of inflammation.
Resumo:
Because of the limited accessibility of the brain for experimentation, but also for ethical and economical reasons, there is considerable interest in culture models suitable for neurotoxicological research. Although it is generally accepted that in vitro models cannot cover the entire spectrum of brain functions, they have proven to be indispensable for investigations in the life sciences since the early work of Harrison (1). To date, many in vitro models of various complexity are available, ranging from monolayer cultures of immortalized cell lines to organotypic cultures. Each of these culture systems has its particularities, therefore, it is of great importance to select the model that is most appropriate for the question to be solved.
Resumo:
BACKGROUND: Food allergy is a common allergic disorder--especially in early childhood. The avoidance of the allergenic food is the only available method to prevent further reactions in sensitized patients. A better understanding of the immunologic mechanisms involved in this reaction would help to develop therapeutic approaches applicable to the prevention of food allergy. OBJECTIVE: To establish a multi-cell in vitro model of sensitized intestinal epithelium that mimics the intestinal epithelial barrier to study the capacity of probiotic microorganisms to modulate permeability, translocation and immunoreactivity of ovalbumin (OVA) used as a model antigen. METHODS: Polarized Caco-2 cell monolayers were conditioned by basolateral basophils and used to examine apical to basolateral transport of OVA by ELISA. Activation of basophils with translocated OVA was measured by beta-hexosaminidase release assay. This experimental setting was used to assess how microorganisms added apically affected these parameters. Basolateral secretion of cytokine/chemokines by polarized Caco-2 cell monolayers was analysed by ELISA. RESULTS: Basophils loaded with OVA-specific IgE responded to OVA in a dose-dependent manner. OVA transported across polarized Caco-2 cell monolayers was found to trigger basolateral basophil activation. Microorganisms including lactobacilli and Escherichia coli increased transepithelial electrical resistance while promoting OVA passage capable to trigger basophil activation. Non-inflammatory levels of IL-8 and thymic stromal lymphopoietin were produced basolaterally by Caco-2 cells exposed to microorganisms. CONCLUSION: The complex model designed in here is adequate to learn about the consequence of the interaction between microorganisms and epithelial cells vis-a-vis the barrier function and antigen translocation, two parameters essential to mucosal homeostasis. It can further serve as a direct tool to search for microorganisms with anti-allergic and anti-inflammatory properties.
Resumo:
Résumé Introduction: La perfusion isolée cytostatique du poumon est une technique attractive qui permet l'administration des doses élevées d'un agent cytostatique tout en épargnant dans la mesure du possible la circulation systémique. Cependant, la perfusion de l'artère pulmonaire risque d'épargner le territoire pulmonaire vascularisé par l'intermédiaire des artères bronchiques, ce qui pourrait diminuer l'efficacité de ce traitement au cas où la lésion ciblée est vascularisée par les artères bronchiques. Ce travail est destiné au développement d'un modèle tumoral au niveau des poumons de rongeur (rat) porteur d'un sarcome pulmonaire afin de déterminer si la voie d'injection des cellules tumorales (intraveineuse, versus intratumorale) influencera la vascularisation des tumeurs (provenant du système artères pulmonaires ou artères bronchiques). Méthod: Des tumeurs de sarcomes pulmonaires ont été générées par injection d'une suspension cellulaire de sarcome, soit par injection intraveineuse, soit directement dans le parenchyme pulmonaire par thoracotomie. Ensuite, une perfusion isolée du poumon porteur de la tumeur à l'aide de l'encre a été effectuée, soit par l'artère pulmonaire, soit par le système des artères bronchiques. La distribution de l'encre dans les vaisseaux tumoraux ainsi que dans les vaisseaux non tumoraux du poumon adjacent a été investiguée à l'aide d'une analyse histologique des poumons perfusés. Résultat: L'administration intraveineuse et intratumorale de la suspension de cellules tumorales résulte en des tumeurs similaires sur le plan histologique. Néanmoins, l'injection intra-parenchymateuse démontre des tumeurs plus homogènes et avec un développement plus prédictible, était associée à une survie plus longue qu'après injection intraveineuse. Les analyses histologiques après perfusion isolée à l'aide de l'encre démontre que les tumeurs résultant de l'injection intraveineuse ont développé une vascularisation se basant sur le système d'artères pulmonaires tandis que les tumeurs émergeant après injection intraparenchymateuse ont développé une vascularisation provenant du système des artères bronchiques. Conclusion: Ce travail démontre pour la première fois l'importance du mode de génération de tumeurs pulmonaires en ce qui concerne leur future vascularisation, ce qui pourrait avoir un impact sur leur traitement par perfusion isolée du poumon. Abstract Isolated cytostatic lung perfusion (ILP) is an attractive technique allowing delivery of a high-dose of cytostatic agents to the lungs while limiting systemic toxicity. In developing a rat model of ILP, we have analysed the effect of the route of tumour cell injection on the source of tumour vessels. Pulmonary sarcomas were estab¬lished by injecting a sarcoma cell suspension either by the intravenous (i.v.) route or directly into the lung paren¬chyma. Ink perfusion through either pulmonary artery (PA) or bronchial arteries (BA) was performed and the characteristics of the tumour deposits defined. i.v. and direct injection methods induced pulmonary sarcoma nodules, with similar histological features. The intraparenchymal injection of tumour cells resulted in more reli¬able and reproducible tumour growth and was associat¬ed with a longer survival of the animals. i.v. injected tumours developed a PA-derived vascular tree whereas directly injected tumours developed a BA-derived vasculature.