50 resultados para 080109 Pattern Recognition and Data Mining
Resumo:
The book presents the state of the art in machine learning algorithms (artificial neural networks of different architectures, support vector machines, etc.) as applied to the classification and mapping of spatially distributed environmental data. Basic geostatistical algorithms are presented as well. New trends in machine learning and their application to spatial data are given, and real case studies based on environmental and pollution data are carried out. The book provides a CD-ROM with the Machine Learning Office software, including sample sets of data, that will allow both students and researchers to put the concepts rapidly to practice.
Resumo:
Evidence from neuropsychological and activation studies (Clarke et al., 2oo0, Maeder et al., 2000) suggests that sound recognitionand localisation are processed by two anatomically and functionally distinct cortical networks. We report here on a case of a patientthat had an interruption of auditory information and we show: i) the effects of this interruption on cortical auditory processing; ii)the effect of the workload on activation pattern.A 36 year old man suffered from a small left mesencephalic haemotrhage, due to cavernous angioma; the let% inferior colliculuswas resected in the surgical approach of the vascular malformation. In the acute stage, the patient complained of auditoryhallucinations and of auditory loss in right ear, while tonal audiometry was normal. At 12 months, auditory recognition, auditorylocalisation (assessed by lTD and IID cues) and auditory motion perception were normal (Clarke et al., 2000), while verbal dichoticlistening was deficient on the right side.Sound recognition and sound localisation activation patterns were investigated with fMRI, using a passive and an activeparadigm. In normal subjects, distinct cortical networks were involved in sound recognition and localisation, both in passive andactive paradigm (Maeder et al., 2OOOa, 2000b).Passive listening of environmental and spatial stimuli as compared to rest strongly activated right auditory cortex, but failed toactivate left primary auditory cortex. The specialised networks for sound recognition and localisation could not be visual&d onthe right and only minimally on the left convexity. A very different activation pattern was obtained in the active condition wherea motor response was required. Workload not only increased the activation of the right auditory cortex, but also allowed theactivation of the left primary auditory cortex. The specialised networks for sound recognition and localisation were almostcompletely present in both hemispheres.These results show that increasing the workload can i) help to recruit cortical region in the auditory deafferented hemisphere;and ii) lead to processing auditory information within specific cortical networks.References:Clarke et al. (2000). Neuropsychologia 38: 797-807.Mae.der et al. (2OOOa), Neuroimage 11: S52.Maeder et al. (2OOOb), Neuroimage 11: S33
Resumo:
We tested for antigen recognition and T cell receptor (TCR)-ligand binding 12 peptide derivative variants on seven H-2Kd-restricted cytotoxic T lymphocytes (CTL) clones specific for a bifunctional photoreactive derivative of the Plasmodium berghei circumsporozoite peptide 252-260 (SYIPSAEKI). The derivative contained iodo-4-azidosalicylic acid in place of PbCS S-252 and 4-azidobenzoic acid on PbCS K-259. Selective photoactivation of the N-terminal photoreactive group allowed crosslinking to Kd molecules and photoactivation of the orthogonal group to TCR. TCR photoaffinity labeling with covalent Kd-peptide derivative complexes allowed direct assessment of TCR-ligand binding on living CTL. In most cases (over 80%) cytotoxicity (chromium release) and TCR-ligand binding differed by less than fivefold. The exceptions included (a) partial TCR agonists (8 cases), for which antigen recognition was five-tenfold less efficient than TCR-ligand binding, (b) TCR antagonists (2 cases), which were not recognized and capable of inhibiting recognition of the wild-type conjugate, (c) heteroclitic agonists (2 cases), for which antigen recognition was more efficient than TCR-ligand binding, and (d) one partial TCR agonist, which activated only Fas (C1)95), but not perforin/granzyme-mediated cytotoxicity. There was no correlation between these divergences and the avidity of TCR-ligand binding, indicating that other factors than binding avidity determine the nature of the CTL response. An unexpected and novel finding was that CD8-dependent clones clearly incline more to TCR antagonism than CD8-independent ones. As there was no correlation between CD8 dependence and the avidity of TCR-ligand binding, the possibility is suggested that CD8 plays a critical role in aberrant CTL function.
Resumo:
This paper presents a validation study on statistical nonsupervised brain tissue classification techniques in magnetic resonance (MR) images. Several image models assuming different hypotheses regarding the intensity distribution model, the spatial model and the number of classes are assessed. The methods are tested on simulated data for which the classification ground truth is known. Different noise and intensity nonuniformities are added to simulate real imaging conditions. No enhancement of the image quality is considered either before or during the classification process. This way, the accuracy of the methods and their robustness against image artifacts are tested. Classification is also performed on real data where a quantitative validation compares the methods' results with an estimated ground truth from manual segmentations by experts. Validity of the various classification methods in the labeling of the image as well as in the tissue volume is estimated with different local and global measures. Results demonstrate that methods relying on both intensity and spatial information are more robust to noise and field inhomogeneities. We also demonstrate that partial volume is not perfectly modeled, even though methods that account for mixture classes outperform methods that only consider pure Gaussian classes. Finally, we show that simulated data results can also be extended to real data.
Resumo:
CREB is a cAMP-responsive nuclear DNA-binding protein that binds to cAMP response elements and stimulates gene transcription upon activation of the cAMP signalling pathway. The protein consists of an amino-terminal transcriptional transactivation domain and a carboxyl-terminal DNA-binding domain (bZIP domain) comprised of a basic region and a leucine zipper involved in DNA recognition and dimerization, respectively. Recently, we discovered a testis-specific transcript of CREB that contains an alternatively spliced exon encoding multiple stop codons. CREB encoded by this transcript is a truncated protein lacking the bZIP domain. We postulated that the antigen detected by CREB antiserum in the cytoplasm of germinal cells is the truncated CREB that must also lack its nuclear translocation signal (NTS). To test this hypothesis we prepared multiple expression plasmids encoding carboxyl-terminal deletions of CREB and transiently expressed them in COS-1 cells. By Western immunoblot analysis as well as immunocytochemistry of transfected cells, we show that CREB proteins truncated to amino acid 286 or shorter are sequestered in the cytoplasm, whereas a CREB of 295 amino acids is translocated into the nucleus. Chimeric CREBs containing a heterologous NTS fused to the first 248 or 261 amino acids of CREB are able to drive the translocation of the protein into the nucleus. Thus, the nine amino acids in the basic region involved in DNA recognition between positions 287 and 295 (RRKKKEYVK) of CREB contain the NTS. Further, mutation of the lysine at position 290 in CREB to an asparagine diminishes nuclear translocation of the protein.(ABSTRACT TRUNCATED AT 250 WORDS)