571 resultados para brain reconstruction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Survival of children born prematurely or with very low birth weight has increased dramatically, but the long term developmental outcome remains unknown. Many children have deficits in cognitive capacities, in particular involving executive domains and those disabilities are likely to involve a central nervous system deficit. To understand their neurostructural origin, we use DTI. Structurally segregated and functionally regions of the cerebral cortex are interconnected by a dense network of axonal pathways. We noninvasively map these pathways across cortical hemispheres and construct normalized structural connection matrices derived from DTI MR tractography. Group comparisons of brain connectivity reveal significant changes in fiber density in case of children with poor intrauterine grown and extremely premature children (gestational age<28 weeks at birth) compared to control subjects. This changes suggest a link between cortico-axonal pathways and the central nervous system deficit. Methods: Sixty premature born infants (5-6 years old) were scanned on clinical 3T scanner (Magnetom Trio, Siemens Medical Solutions, Erlangen, Germany) at two hospitals (HUG, Geneva and CHUV, Lausanne). For each subject, T1-weighted MPRAGE images (TR/TE=2500/2.91,TI=1100, resolution=1x1x1mm, matrix=256x154) and DTI images (30 directions, TR/TE=10200/107, in-plane resolution=1.8x1.8x2mm, 64 axial, matrix=112x112) were acquired. Parent(s) provided written consent on prior ethical board approval. The extraction of the Whole Brain Structural Connectivity Matrix was performed following (Cammoun, 2009 and Hagmann, 2008). The MPARGE images were registered using an affine registration to the non-weighted-DTI and WM-GM segmentation performed on it. In order to have equal anatomical localization among subjects, 66 cortical regions with anatomical landmarks were created using the curvature information, i.e. sulcus and gyrus (Cammoun et al, 2007; Fischl et al, 2004; Desikan et al, 2006) with freesurfer software (http://surfer.nmr.mgh.harvard.edu/). Tractography was performed in WM using an algorithm especially designed for DTI/DSI data (Hagmann et al., 2007) and both information were then combined in a matrix. Each row and column of the matrix corresponds to a particular ROI. Each cell of index (i,j) represents the fiber density of the bundle connecting the ROIs i and j. Subdividing each cortical region, we obtained 4 Connectivity Matrices of different resolution (33, 66, 125 and 250 ROI/hemisphere) for each subject . Subjects were sorted in 3 different groups, namely (1) control, (2) Intrauterine Growth Restriction (IUGR), (3) Extreme Prematurity (EP), depending on their gestational age, weight and percentile-weight score at birth. Group-to-group comparisons were performed between groups (1)-(2) and (1)-(3). The mean age at examination of the three groups were similar. Results: Quantitative analysis were performed between groups to determine fibers density differences. For each group, a mean connectivity matrix with 33ROI/hemisphere resolution was computed. On the other hand, for all matrix resolutions (33,66,125,250 ROI/hemisphere), the number of bundles were computed and averaged. As seen in figure 1, EP and IUGR subjects present an overall reduction of fibers density in both interhemispherical and intrahemispherical connections. This is given quantitatively in table 1. IUGR subjects presents a higher percentage of missing fiber bundles than EP when compared to control subjects (~16% against 11%). When comparing both groups to control subjects, for the EP subjects, the occipito-parietal regions seem less interhemispherically connected whilst the intrahemispherical networks present lack of fiber density in the lymbic system. Children born with IUGR, have similar reductions in interhemispherical connections than the EP. However, the cuneus and precuneus connections with the precentral and paracentral lobe are even lower than in the case of the EP. For the intrahemispherical connections the IUGR group preset a loss of fiber density between the deep gray matter structures (striatum) and the frontal and middlefrontal poles, connections typically involved in the control of executive functions. For the qualitative analysis, a t-test comparing number of bundles (p-value<0.05) gave some preliminary significant results (figure 2). Again, even if both IUGR and EP appear to have significantly less connections comparing to the control subjects, the IUGR cohort seems to present a higher lack of fiber density specially relying the cuneus, precuneus and parietal areas. In terms of fiber density, preliminary Wilcoxon tests seem to validate the hypothesis set by the previous analysis. Conclusions: The goal of this study was to determine the effect of extreme prematurity and poor intrauterine growth on neurostructural development at the age of 6 years-old. This data indicates that differences in connectivity may well be the basis for the neurostructural and neuropsychological deficit described in these populations in the absence of overt brain lesions (Inder TE, 2005; Borradori-Tolsa, 2004; Dubois, 2008). Indeed, we suggest that IUGR and prematurity leads to alteration of connectivity between brain structures, especially in occipito-parietal and frontal lobes for EP and frontal and middletemporal poles for IUGR. Overall, IUGR children have a higher loss of connectivity in the overall connectivity matrix than EP children. In both cases, the localized alteration of connectivity suggests a direct link between cortico-axonal pathways and the central nervous system deficit. Our next step is to link these connectivity alterations to the performance in executive function tests.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neuronal circuits in the central nervous system play a critical role in orchestrating the control of glucose and energy homeostasis. Glucose, beside being a nutrient, is also a signal detected by several glucose-sensing units that are located at different anatomical sites and converge to the hypothalamus to cooperate with leptin and insulin in controlling the melanocortin pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Chest wall resection and reconstruction can be performed with minimal mortality and excellent functional and cosmetic results using synthetic meshes, methylmethacrylate, or other substitutes. However, these techniques are less easily applicable if chest wall resections have to be performed for infections. METHODS: We report a novel technique for this purpose using a modified latissimus dorsi flap harvested in continuity with the thoracolumbar fascia. The vascularized fascia was sutured into the chest wall defect, providing a stable base for the muscular component of the flap. Three patients requiring large full-thickness resections of the anterolateral chest wall for chronic infections were treated accordingly, two presenting with chronic radionecrosis and osteomyelitis and one with chest wall invasion by pulmonary aspergillosis. RESULTS: There were no intraoperative or postoperative complications and immediate extubation was possible in all 3 patients without the need for postoperative ventilation or tracheotomy. Healing of the infected chest wall was observed in all 3 patients. Postoperative cinemagnetic resonance imaging revealed concordant movements of the replaced segments without evidence of paradoxical motion during inspiration and expiration. CONCLUSIONS: This technique is easy and safe. It allows a stable and satisfactory reconstruction after large anterolateral full-thickness chest wall resections of infected, previously irradiated tissues, using only well-vascularized autologous tissue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: A 55-year-old man with glioblastoma multiforme was treated with continuous, dose-dense temozolomide. This therapy was curtailed after three cycles because of nausea, asthenia, and neuropsychological deterioration. During a subsequent course of radiotherapy, the patient developed fever, headaches, and cutaneous lesions. INVESTIGATIONS: Physical examination, cerebral MRI, brain biopsy, skin biopsy, immunohistochemistry, bronchoscopy with bronchoalveolar lavage, and laboratory tests. DIAGNOSIS: Severe temozolomide-induced immunosuppression, exacerbated by corticosteroids, with profound T-cell lymphocytopenia and simultaneous opportunistic infections with Pneumocystis jiroveci pneumonia, brain abscess with Listeria monocytogenes, and cutaneous Kaposi's sarcoma. MANAGEMENT: Discontinuation of temozolomide, discontinuation of radiotherapy, antibiotic treatment with amoxicillin and gentamicin, and administration of atovaquone and pentamidine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We previously showed that exposure of 3D organotypic rat brain cell cultures to 1mM 2-methylcitrate (2-MCA) or 3-hydroxyglutarate (3- OHGA) every 12h over three days (DIV11-DIV14) results in ammonium accumulation and cell death. The aim of this study was to define the time course (every 24h) of the observed effects. Ammonium in culture medium already increased at DIV12 staying stable on the following days under 3-OHGA exposure, while it increased consecutively up to much higher levels under 2-MCA exposure. Lactate increase and glucose decrease were observed from DIV13 and DIV14, respectively. We conclude that ammonium accumulation precedes alterations of energy metabolism. As observed by immunohistochemistry glial cells were the predominant dying cells. Immunoblotting and immunohistochemistry with cell death specific markers (caspase-3, alpha-fodrin, LC3) showed that 2-MCA exposure significantly increased apoptosis on DIV14, but did not alter autophagy or necrosis. In contrast, 3-OHGA exposure substantially increased necrosis already from DIV13, while no change was observed for apoptosis and autophagy. In conclusion, ammonium accumulation, secondary disturbance of energy metabolism and glial cell death are involved in the neuropathogenesis ofmethylmalonic aciduria and glutaric aciduria type I. Interestingly, brain cells are dying by necrosis under 3-OHGA exposure and by apoptosis under 2-MCA exposure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

IMPORTANCE OF THE FIELD: The permeability glycoprotein (P-gp) is an important protein transporter involved in the disposition of many drugs with different chemical structures, but few studies have examined a possible stereoselectivity in its activity. P-gp can have a major impact on the distribution of drugs in selected organs, including the brain. Polymorphisms of the ABCB1 gene, which encodes for P-gp, can influence the kinetics of several drugs. AREAS COVERED IN THIS REVIEW: A search including publications from 1990 up to 2009 was performed on P-gp stereoselectivity and on the impact of ABCB1 polymorphisms on enantiomer brain distribution. WHAT THE READER WILL GAIN: Despite stereoselectivity not being expected because of the large variability of chemical structures of P-gp substrates, structure-activity relationships suggest different P-gp-binding sites for enantiomers. Enantioselectivity in the activity of P-gp has been demonstrated by in vitro studies and in animal models (preferential transport of one enantiomer or different inhibitory potencies towards P-gp activity between enantiomers). There is also in vivo evidence of an enantioselective drug transport at the human blood-brain barrier. TAKE HOME MESSAGE: The significant enantioselective activity of P-gp might be clinically relevant and must be taken into account in future studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: Radiosurgery (RS) is gaining increasing acceptance in the upfront management of brain metastases (BM). It was initially used in so-called radioresistant metastases (melanoma, renal cell, sarcoma) because it allowed delivering higher dose to the tumor. Now, RS is also used for BM of other cancers. The risk of high incidence of new BM questions the need for associated whole-brain radiotherapy (WBRT). Recent evidence suggests that RS alone allows avoiding cognitive impairment related to WBRT, and the latter should be upheld for salvage therapy. Thus the increase use of RS for single and multiple BM raises new technical challenges for treatment delivery and dosimetry. We present our single institution experience focusing on the criteria that led to patients' selection for RS treatment with Gamma Knife (GK) in lieu of Linac. METHODS: Leksell Gamma Knife Perfexion (Elekta, Sweden) was installed in July 2010. Currently, the Swiss federal health care supports the costs of RS for BM with Linac but not with GK. Therefore, in our center, we always consider first the possibility to use Linac for this indication, and only select patients for GK in specific situations. All cases of BM treated with GK were retrospectively reviewed for criteria yielding to GK indication, clinical information, and treatment data. Further work in progress includes a posteriori dosimetry comparison with our Linac planning system (Brainscan V.5.3, Brainlab, Germany). RESULTS: From July 2010 to March 2012, 20 patients had RS for BM with GK (7 patients with single BM, and 13 with multiple BM). During the same period, 31 had Linac-based RS. Primary tumor was melanoma in 9, lung in 7, renal in 2, and gastrointestinal tract in 2 patients. In single BM, the reason for choosing of GK was the anatomical location close to, or in highly functional areas (1 motor cortex, 1 thalamic, 1 ventricular, 1 mesio-temporal, 3 deep cerebellar close to the brainstem), especially since most of these tumors were intended to be treated with high-dose RS (24 Gy at margin) because of their histology (3 melanomas, 1 renal cell). In multiple BM, the reason for choosing GK in relation with the anatomical location of the lesions was either technical (limitations of Linac movements, especially in lower posterior fossa locations) or closeness of multiple lesions to highly functional areas (typically, multiple posterior fossa BM close to the brainstem), precluding optimal dosimetry with Linac. Again, this was made more critical for multiple BM needing high-dose RS (6 melanoma, 2 hypernephroma). CONCLUSION: Radiosurgery for BM may represent some technical challenge in relation with the anatomical location and multiplicity of the lesions. These considerations may be accentuated for so-called radioresistant BM, when higher dose RS in needed. In our experience, Leksell Gamma Knife Perfexion proves to be useful in addressing these challenges for the treatment of BM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

These studies show that either central pharmacological blockade or genetic ablation of alpha(1B)-adrenoceptors markedly attenuates the behavioral activation caused by modafinil, implicating these receptors in the drug's action.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Subcellular fractions isolated from rat brain aggregating cell cultures were studied by electron microscopy and showed the presence of typical myelin membranes. The chemical composition of purified culture myelin was similar to the fraction isolated from rat brain in terms of CNP specific activity, protein and lipid composition. The ratio of small to large components of myelin basic protein was comparable in culture and in vivo. These two proteins incorporated radioactive phosphorus. The major myelin glycoprotein was present and during development in culture its apparent molecular weight decreased although it never reached the position observed in myelin isolated from adult rats. In culture, the yield of myelin did not increase substantially between 33 and 50 days and was comparable to that of 15-day-old rat brain. The ratio basic protein to proteolipid protein resembled immature myelin and the cerebroside content was very low. A 'floating fraction' was isolated from the cultures and contained some myelin but mostly single membranes. Although these results indicate that myelin maturation is delayed in vitro this culture system provides substantial amounts of purified myelin to allow a complete biochemical analysis and metabolic studies during development.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: To analyze the effect of tight glycemic control with the use of intensive insulin therapy on cerebral glucose metabolism in patients with severe brain injury. DESIGN: Retrospective analysis of a prospective observational cohort. SETTING: University hospital neurologic intensive care unit. PATIENTS: Twenty patients (median age 59 yrs) monitored with cerebral microdialysis as part of their clinical care. INTERVENTIONS: Intensive insulin therapy (systemic glucose target: 4.4-6.7 mmol/L [80-120 mg/dL]). MEASUREMENTS AND MAIN RESULTS: Brain tissue markers of glucose metabolism (cerebral microdialysis glucose and lactate/pyruvate ratio) and systemic glucose were collected hourly. Systemic glucose levels were categorized as within the target "tight" (4.4-6.7 mmol/L [80-120 mg/dL]) vs. "intermediate" (6.8-10.0 mmol/L [121-180 mg/dL]) range. Brain energy crisis was defined as a cerebral microdialysis glucose <0.7 mmol/L with a lactate/pyruvate ratio >40. We analyzed 2131 cerebral microdialysis samples: tight systemic glucose levels were associated with a greater prevalence of low cerebral microdialysis glucose (65% vs. 36%, p < 0.01) and brain energy crisis (25% vs.17%, p < 0.01) than intermediate levels. Using multivariable analysis, and adjusting for intracranial pressure and cerebral perfusion pressure, systemic glucose concentration (adjusted odds ratio 1.23, 95% confidence interval [CI] 1.10-1.37, for each 1 mmol/L decrease, p < 0.001) and insulin dose (adjusted odds ratio 1.10, 95% CI 1.04-1.17, for each 1 U/hr increase, p = 0.02) independently predicted brain energy crisis. Cerebral microdialysis glucose was lower in nonsurvivors than in survivors (0.46 +/- 0.23 vs. 1.04 +/- 0.56 mmol/L, p < 0.05). Brain energy crisis was associated with increased mortality at hospital discharge (adjusted odds ratio 7.36, 95% CI 1.37-39.51, p = 0.02). CONCLUSIONS: In patients with severe brain injury, tight systemic glucose control is associated with reduced cerebral extracellular glucose availability and increased prevalence of brain energy crisis, which in turn correlates with increased mortality. Intensive insulin therapy may impair cerebral glucose metabolism after severe brain injury.