32 resultados para xenobiotics


Relevância:

10.00% 10.00%

Publicador:

Resumo:

(Matrix-assisted) laser desorption/ionization ((MA)LDI) mass spectrometry imaging (MSI) has been driven by remarkable technological developments in the last couple of years. Although molecular information of a wide range of molecules including peptides, lipids, metabolites, and xenobiotics can be mapped, (MA)LDI MSI only leads to the detection of the most abundant soluble molecules in the cells and, consequently, does not provide access to the least expressed species, which can be very informative in the scope of disease research. Within a short period of time, numerous protocols and concepts have been developed and introduced in order to increase MSI sensitivity, including in situ tissue chemistry and solvent-free matrix depositions. In this chapter, we will discuss some of the latest developments in the field of high-sensitivity MSI using solvent-free matrix depositions and will detail protocols of two methods with their capability of enriching molecular MSI signal as demonstrated within our laboratory.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is an increasing need to develop improved systems for predicting the safety of xenobiotics. However, to move beyond hazard identification the available concentration of the test compounds needs to be incorporated. In this study cyclosporine A (CsA) was used as a model compound to assess the kinetic profiles in two rodent brain cell cultures after single and repeated exposures. CsA induced-cyclophilin B (Cyp-B) secretion was also determined as CsA-specific pharmacodynamic endpoint. Since CsA is a potent p-glycoprotein substrate, the ability of this compound to cross the blood-brain barrier (BBB) was also investigated using an in vitro bovine model with repeated exposures up to 14days. Finally, CsA uptake mechanisms were studied using a parallel artificial membrane assay (PAMPA) in combination with a Caco-2 model. Kinetic results indicate a low intracellular CsA uptake, with no marked bioaccumulation or biotransformation. In addition, only low CsA amounts crossed the BBB. PAMPA and Caco-2 experiments revealed that CsA is mostly trapped to lipophilic compartments and exits the cell apically via active transport. Thus, although CsA is unlikely to enter the brain at cytotoxic concentrations, it may cause alterations in electrical activity and is likely to increase the CNS concentration of other compounds by occupying the BBBs extrusion capacity. Such an integrated testing system, incorporating BBB, brain culture models and kinetics could be applied for assessing neurotoxicity potential of compounds.