146 resultados para viral entry
Resumo:
BACKGROUND: Tumor necrosis factor/tumor necrosis factor receptor superfamily members conform a group of molecular interaction pathways of essential relevance during the process of T-cell activation and differentiation toward effector cells and particularly for the maintenance phase of the immune response. Specific blockade of these interacting pathways, such as CD40-CD40L, contributes to modulate the deleterious outcome of allogeneic immune responses. We postulated that antagonizing the interaction of LIGHT expression on activated T cells with its receptors, herpesvirus entry mediator and lymphotoxin β receptor, may decrease T cell-mediated allogeneic responses. METHODS: A flow cytometry competition assay was designed to identify anti-LIGHT monoclonal antibodies capable to prevent the interaction of mouse LIGHT with its receptors expressed on transfected cells. An antibody with the desired specificity was evaluated in a short-term in vivo allogeneic cytotoxic assay and tested for its ability to detect endogenous mouse LIGHT. RESULTS: We provide evidence for the first time that in mice, as previously described in humans, LIGHT protein is rapidly and transiently expressed after T-cell activation, and this expression was stronger on CD8 T cells than on CD4 T cells. Two anti-LIGHT antibodies prevented interactions of mouse LIGHT with its two known receptors, herpesvirus entry mediator and lymphotoxin β receptor. In vivo administration of anti-LIGHT antibody (clone 10F12) ameliorated host antidonor short-term cytotoxic response in wild type B6 mice, although to a lesser extent than that observed in LIGHT-deficient mice. CONCLUSION: The therapeutic targeting of LIGHT may contribute to achieve a better control of cytotoxic responses refractory to current immunosuppressive drugs in transplantation.
Resumo:
Viral hepatitis is associated with significant morbidity and mortality worldwide. Hepatitis A and E viruses are enterally transmitted and lead to usually self-limited acute hepatitis. Hepatitis B, C and D viruses are transmitted by parenteral routes and can lead to chronic hepatitis with progression to liver cirrhosis and hepatocellular carcinoma. Here, we briefly review current understanding and new developments in the virology and epidemiology, diagnosis, natural history, therapy and prevention of viral hepatitis.
Resumo:
PURPOSE: To redirect an ongoing antiviral T-cell response against tumor cells in vivo, we evaluated conjugates consisting of antitumor antibody fragments coupled to class I MHC molecules loaded with immunodominant viral peptides. EXPERIMENTAL DESIGN: First, lymphochoriomeningitis virus (LCMV)-infected C57BL/6 mice were s.c. grafted on the right flank with carcinoembryonic antigen (CEA)-transfected MC38 colon carcinoma cells precoated with anti-CEA x H-2D(b)/GP33 LCMV peptide conjugate and on the left flank with the same cells precoated with control anti-CEA F(ab')(2) fragments. Second, influenza virus-infected mice were injected i.v., to induce lung metastases, with HER2-transfected B16F10 cells, coated with either anti-HER2 x H-2D(b)/NP366 influenza peptide conjugates, or anti-HER2 F(ab')(2) fragments alone, or intact anti-HER2 monoclonal antibody. Third, systemic injections of anti-CEA x H-2D(b) conjugates with covalently cross-linked GP33 peptides were tested for the growth inhibition of MC38-CEA(+) cells, s.c. grafted in LCMV-infected mice. RESULTS: In the LCMV-infected mice, five of the six grafts with conjugate-precoated MC38-CEA(+) cells did not develop into tumors, whereas all grafts with F(ab')(2)-precoated MC38-CEA(+) cells did so (P = 0.0022). In influenza virus-infected mice, the group injected with cells precoated with specific conjugate had seven times less lung metastases than control groups (P = 0.0022 and P = 0.013). Most importantly, systemic injection in LCMV-infected mice of anti-CEA x H-2D(b)/cross-linked GP33 conjugates completely abolished tumor growth in four of five mice, whereas the same tumor grew in all five control mice (P = 0.016). CONCLUSION: The results show that a physiologic T-cell antiviral response in immunocompetent mice can be redirected against tumor cells by the use of antitumor antibody x MHC/viral peptide conjugates.
Resumo:
Inflammatory mediators induce neuropeptide release from nociceptive nerve endings and cell bodies, causing increased local blood flow and vascular leakage resulting in edema. Neuropeptide release from sensory neurons depends on an increase in intracellular Ca2+ concentration. In this study we investigated the role of two types of pH sensors in acid-induced Ca2+ entry and neuropeptide release from dorsal root ganglion (DRG) neurons. The transient receptor potential vanilloid 1 channel (TRPV1) and acid-sensing ion channels (ASICs) are both H+-activated ion channels present in these neurons, and are therefore potential pH sensors for this process. We demonstrate with in situ hybridization and immunocytochemistry that TRPV1 and several ASIC subunits are co-expressed with neuropeptides in DRG neurons. Activation of ASICs and of TRPV1 led to an increase in intracellular Ca2+ concentration. While TRPV1 has a high Ca2+ permeability and allows direct Ca2+ entry when activated, we show here that ASICs of DRG neurons mediate Ca2+ entry mostly by depolarization-induced activation of voltage-gated Ca2+ channels and only to a small extent via the pore of Ca2+-permeable ASICs. Extracellular acidification led to release of the neuropeptide calcitonin gene-related peptide from DRG neurons. The pH dependence and the pharmacological profile indicated that TRPV1, but not ASICs, induced neuropeptide secretion. In conclusion, this study shows that although both TRPV1 and ASICs mediate Ca2+ influx, TRPV1 is the principal sensor for acid-induced neuropeptide secretion from sensory neurons.
Resumo:
We argue that attitudes about immigration can be better understood by paying closer attention to the various ways in which national group boundaries are demarcated. We describe two related lines of work that address this. The first deals with national group definitions and, based on evidence from studies carried out in England and analyses of international survey data, argues that the relationship between national identification and prejudice toward immigrants is contingent on the extent to which ethnic or civic definitions of nationality are endorsed. The second, which uses European survey data, examines support for ascribed and acquired criteria that can be applied when determining who is permitted to migrate to one's country, and the various forms of national and individual threat that affect support for these criteria. We explain how the research benefits from a multilevel approach and also suggest how these findings relate to some current policy debates.
Resumo:
BACKGROUND: We studied human cytomegalovirus (CMV) donor-to-recipient transmission patterns in organ transplantation by analyzing genomic variants on the basis of CMV glycoprotein B (gB) genotyping. METHODS: Organ transplant recipients were included in the study if they had CMV viremia, if they had received an organ from a CMV-seropositive donor, and if there was at least 1 other recipient of an organ from the same donor who developed CMV viremia. Genotypes (gB1-4) were determined by real-time polymerase chain reaction. RESULTS: Forty-seven recipients of organs from 21 donors developed CMV viremia. Twenty-three recipients had a pretransplant donor/recipient (D/R) CMV serostatus of D(+)/R(+), and 24 had a serostatus of D(+)/R(-). The prevalences of genotypes in recipients were as follows: for gB1, 51% (n = 24); for gB2, 19% (n = 9); for gB3, 9% (n = 4); for gB4, 0% (n = 0); and for mixed infection, 21% (n = 10). Recipients of an organ from a common donor had infection with CMV of the same gB genotype in 12 (57%) of 21 instances. Concordance between genotypes was higher among seronegative (i.e., D(+)/R(-)) recipients than among seropositive (D(+)/R(+)) recipients, although discordances resulting from the transmission of multiple strains were seen. In seropositive recipients, transmission of multiple strains from the donor could not be differentiated from reactivation of a recipient's own strains. CONCLUSION: Our analysis of strain concordance among recipients of organs from common donors showed that transmission of CMV has complex dynamic patterns. In seropositive recipients, transmission or reactivation of multiple CMV strains is possible.
Resumo:
The prototypic arenavirus lymphocytic choriomeningitis virus (LCMV), which naturally persists in rodents, represents a model for HIV, HBV, and HCV. Cleavage of the viral glycoprotein precursor by membrane-bound transcription factor peptidase, site 1 (Mbtps1 or site-1 protease), is crucial for the life cycle of arenaviruses and therefore represents a potential target for therapy. Recently, we reported a viable hypomorphic allele of Mbtps1 (woodrat) encoding a protease with diminished enzymatic activity. Using the woodrat allele, we examine the role of Mbtps1 during persistent LCMV infection. Surprisingly, Mbtps1 inhibition limits persistent but not acute viral infection and is associated with an organ/cell type-specific decrease in viral titers. Analysis of bone marrow-derived dendritic cells from woodrat mice supports their specific role in resolving persistent viral infection. These results support in vivo targeting of Mbtps1 in the treatment of arenavirus infections and demonstrate a critical role for dendritic cells in persistent viral infections.
Resumo:
OBJECTIVES: After structured treatment interruption (STI) of treatment for HIV-1, a fraction of patients maintain suppressed viral loads. Prospective identification of such patients might improve HIV-1 treatment, if selected patients are offered STI. METHODS: We analysed the effect of previously identified genetic modulators of HIV-1 disease progression on patients' ability to suppress viral replication after STI. Polymorphisms in the genes killer cell immunoglobulin-like receptor 3DLI (KIR3DL1)/KIR3DS1, human leucocyte antigen B (HLA-B) and HLA Complex P5 (HCP5), and a polymorphism affecting HLA-C surface expression were analysed in 130 Swiss HIV Cohort Study patients undergoing STI. Genotypes were correlated with viral load levels after STI. RESULTS: We observed a statistically significant reduction in viral load after STI in carriers of HLA-B alleles containing either the Bw480Thr or the Bw480Ile epitope (mean adjusted effect on post-STI viral load: -0.82 log HIV-1 RNA copies/ml, P < 0.001; and -1.12 log copies/ml, P < 0.001, respectively). No significant effects were detected for the other polymorphisms analysed. The likelihood of being able to control HIV-1 replication using a prespecified cut-off (viral load increase < 1000 copies/ml) increased from 39% in Bw4-negative patients to 53% in patients carrying Bw4-80Thr, and to 65% in patients carrying Bw4-80Ile (P = 0.02). CONCLUSIONS: These data establish a significant impact of HLA-Bw4 on the control of viral replication after STI.
Resumo:
BACKGROUND: This study compared the incidence of fatal and nonfatal AIDS and non-AIDS events in HIV-positive individuals with a CD4 cell count more than 350 cells/μl among viral load strata: low (<500 copies/ml), intermediate (500-9999.9 copies/ml) and high (≥ 10000 copies/ml). METHODS: Individuals contributed person-years at risk if their most recent CD4 cell count was more than 350 cells/μl. Follow-up was censored if their CD4 cell count dropped below 350 cells/μl. Poisson regression analysis investigated the relationship between viraemia and the incidence of AIDS and non-AIDS events. RESULTS: Three hundred and fifty-four AIDS events occurred during 51 732 person-years of follow-up (PYFU), crude incidence rate of AIDS across the three strata was 0.53, 0.90 and 2.12 per 100 PYFU, respectively. After adjustment, a higher rate of AIDS was observed in individuals with moderate [incidence rate ratio (IRR) 1.44, 1.02-2.05, P = 0.03] and high viraemia had a higher rate (IRR 3.91, 2.89-5.89, P < 0.0001) compared with low viraemia. Five hundred and seventy-two non-AIDS events occurred during 43 784 PYFU, the crude incidence rates were 1.28, 1.52, and 1.38 per 100 PYFU, respectively. After adjustment, particularly for age, region of Europe and starting combination antiretroviral therapy, there was a 61% (IRR 1.61, 1.21-2.14, P = 0.001) and 66% (IRR 1.66, 1.17-2.32, P = 0.004) higher rate of non-AIDS in individuals with intermediate and high viraemia compared with low viraemia. CONCLUSION: In individuals with a CD4 cell count more than 350 cells/μl, an increased incidence of AIDS and a slightly increased incidence of non-AIDS was found in those with uncontrolled viral replication. The association with AIDS was clear and consistent. However, the association with non-AIDS was only apparent after adjustment and no differences were observed between intermediate and high viraemia.
Resumo:
There is great interindividual variability in HIV-1 viral setpoint after seroconversion, some of which is known to be due to genetic differences among infected individuals. Here, our focus is on determining, genome-wide, the contribution of variable gene expression to viral control, and to relate it to genomic DNA polymorphism. RNA was extracted from purified CD4+ T-cells from 137 HIV-1 seroconverters, 16 elite controllers, and 3 healthy blood donors. Expression levels of more than 48,000 mRNA transcripts were assessed by the Human-6 v3 Expression BeadChips (Illumina). Genome-wide SNP data was generated from genomic DNA using the HumanHap550 Genotyping BeadChip (Illumina). We observed two distinct profiles with 260 genes differentially expressed depending on HIV-1 viral load. There was significant upregulation of expression of interferon stimulated genes with increasing viral load, including genes of the intrinsic antiretroviral defense. Upon successful antiretroviral treatment, the transcriptome profile of previously viremic individuals reverted to a pattern comparable to that of elite controllers and of uninfected individuals. Genome-wide evaluation of cis-acting SNPs identified genetic variants modulating expression of 190 genes. Those were compared to the genes whose expression was found associated with viral load: expression of one interferon stimulated gene, OAS1, was found to be regulated by a SNP (rs3177979, p = 4.9E-12); however, we could not detect an independent association of the SNP with viral setpoint. Thus, this study represents an attempt to integrate genome-wide SNP signals with genome-wide expression profiles in the search for biological correlates of HIV-1 control. It underscores the paradox of the association between increasing levels of viral load and greater expression of antiviral defense pathways. It also shows that elite controllers do not have a fully distinctive mRNA expression pattern in CD4+ T cells. Overall, changes in global RNA expression reflect responses to viral replication rather than a mechanism that might explain viral control.
Resumo:
Background: Although combination antiretroviral therapy (cART) dramatically reduces rates of AIDS and death, a minority of patients experience clinical disease progression during treatment. <p>Objective: To investigate whether detection of CXCR4(X4)-specific strains or quantification of X4-specific HIV-1 load predict clinical outcome. Methods: From the Swiss HIV Cohort Study, 96 participants who initiated cART yet subsequently progressed to AIDS or death were compared with 84 contemporaneous, treated nonprogressors. A sensitive heteroduplex tracking assay was developed to quantify plasma X4 and CCR5 variants and resolve HIV-1 load into coreceptor-specific components. Measurements were analyzed as cofactors of progression in multivariable Cox models adjusted for concurrent CD4 cell count and total viral load, applying inverse probability weights to adjust for sampling bias. Results: Patients with X4 variants at baseline displayed reduced CD4 cell responses compared with those without X4 strains (40 versus 82 cells/mu l; P= 0.012). The adjusted multivariable hazard ratio (HR) for clinical progression was 4.8 [95% confidence interval (Cl) 2.3-10.0] for those demonstrating X4 strains at baseline. The X4-specific HIV-1 load was a similarly independent predictor, with HR values of 3.7(95%Cl, 1.2-11.3) and 5.9 (95% Cl, 2.2-15.0) for baseline loads of 2.2-4.3 and > 4.3 log(10)copies/ml, respectively, compared with < 2.2 log(10)copies/ml. Conclusions: HIV-1 coreceptor usage and X4-specific viral loads strongly predicted disease progression during cART, independent of and in addition to CD4 cell count or total viral load. Detection and quantification of X4 strains promise to be clinically useful biomarkers to guide patient management and study HIV-1 pathogenesis.
Resumo:
The extracellular matrix (ECM) receptor dystroglycan (DG) serves as a cellular receptor for the highly pathogenic arenavirus Lassa virus (LASV) that causes a haemorrhagic fever with high mortality in human. In the host cell, DG provides a molecular link between the ECM and the actin cytoskeleton via the adapter proteins utrophin or dystrophin. Here we investigated post-translational modifications of DG in the context of LASV cell entry. Using the tyrosine kinase inhibitor genistein, we found that tyrosine kinases are required for efficient internalization of virus particles, but not virus-receptor binding. Engagement of cellular DG by LASV envelope glycoprotein (LASV GP) in human epithelial cells induced tyrosine phosphorylation of the cytoplasmic domain of DG. LASV GP binding to DG further resulted in dissociation of the adapter protein utrophin from virus-bound DG. This virus-induced dissociation of utrophin was affected by genistein treatment, suggesting a role of receptor tyrosine phosphorylation in the process.
Resumo:
Arenaviruses merit interest as clinically important human pathogens and include several causative agents, chiefly Lassa virus (LASV), of hemorrhagic fever disease in humans. There are no licensed LASV vaccines, and current antiarenavirus therapy is limited to the use of ribavirin, which is only partially effective and is associated with significant side effects. The arenavirus glycoprotein (GP) precursor GPC is processed by the cellular site 1 protease (S1P) to generate the peripheral virion attachment protein GP1 and the fusion-active transmembrane protein GP2, which is critical for production of infectious progeny and virus propagation. Therefore, S1P-mediated processing of arenavirus GPC is a promising target for therapeutic intervention. To this end, we have evaluated the antiarenaviral activity of PF-429242, a recently described small-molecule inhibitor of S1P. PF-429242 efficiently prevented the processing of GPC from the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) and LASV, which correlated with the compound's potent antiviral activity against LCMV and LASV in cultured cells. In contrast, a recombinant LCMV expressing a GPC whose processing into GP1 and GP2 was mediated by furin, instead of S1P, was highly resistant to PF-429242 treatment. PF-429242 did not affect virus RNA replication or budding but had a modest effect on virus cell entry, indicating that the antiarenaviral activity of PF-429242 was mostly related to its ability to inhibit S1P-mediated processing of arenavirus GPC. Our findings support the feasibility of using small-molecule inhibitors of S1P-mediated processing of arenavirus GPC as a novel antiviral strategy.