60 resultados para two-mass model
Resumo:
The arbuscular mycorrhizal symbiosis is formed between arbuscular mycorrhizal fungi (AMF) and plant roots. The fungi provide the plant with inorganic phosphate (P). The symbiosis can result in increased plant growth. Although most global food crops naturally form this symbiosis, very few studies have shown that their practical application can lead to large-scale increases in food production. Application of AMF to crops in the tropics is potentially effective for improving yields. However, a main problem of using AMF on a large-scale is producing cheap inoculum in a clean sterile carrier and sufficiently concentrated to cheaply transport. Recently, mass-produced in vitro inoculum of the model mycorrhizal fungus Rhizophagus irregularis became available, potentially making its use viable in tropical agriculture. One of the most globally important food plants in the tropics is cassava. We evaluated the effect of in vitro mass-produced R. irregularis inoculum on the yield of cassava crops at two locations in Colombia. A significant effect of R. irregularis inoculation on yield occurred at both sites. At one site, yield increases were observed irrespective of P fertilization. At the other site, inoculation with AMF and 50% of the normally applied P gave the highest yield. Despite that AMF inoculation resulted in greater food production, economic analyses revealed that AMF inoculation did not give greater return on investment than with conventional cultivation. However, the amount of AMF inoculum used was double the recommended dose and was calculated with European, not Colombian, inoculum prices. R. irregularis can also be manipulated genetically in vitro, leading to improved plant growth. We conclude that application of in vitro R. irregularis is currently a way of increasing cassava yields, that there is a strong potential for it to be economically profitable and that there is enormous potential to improve this efficiency further in the future.
Resumo:
Recent ink dating methods focused mainly on changes in solvent amounts occurring over time. A promising method was developed at the Landeskriminalamt of Munich using thermal desorption (TD) followed by gas chromatography / mass spectrometry (GC/MS) analysis. Sequential extractions of the phenoxyethanol present in ballpoint pen ink entries were carried out at two different temperatures. This method is applied in forensic practice and is currently implemented in several laboratories participating to the InCID group (International Collaboration on Ink Dating). However, harmonization of the method between the laboratories proved to be a particularly sensitive and time consuming task. The main aim of this work was therefore to implement the TD-GC/MS method at the Bundeskriminalamt (Wiesbaden, Germany) in order to evaluate if results were comparable to those obtained in Munich. At first validation criteria such as limits of reliable measurements, linearity and repeatability were determined. Samples were prepared in three different laboratories using the same inks and analyzed using two TDS-GC/MS instruments (one in Munich and one in Wiesbaden). The inter- and intra-laboratory variability of the ageing parameter was determined and ageing curves were compared. While inks stored in similar conditions yielded comparable ageing curves, it was observed that significantly different storage conditions had an influence on the resulting ageing curves. Finally, interpretation models, such as thresholds and trend tests, were evaluated and discussed in view of the obtained results. Trend tests were considered more suitable than threshold models. As both approaches showed limitations, an alternative model, based on the slopes of the ageing curves, was also proposed.
Resumo:
Eukaryotic cells generate energy in the form of ATP, through a network of mitochondrial complexes and electron carriers known as the oxidative phosphorylation system. In mammals, mitochondrial complex I (CI) is the largest component of this system, comprising 45 different subunits encoded by mitochondrial and nuclear DNA. Humans diagnosed with mutations in the gene NDUFS4, encoding a nuclear DNA-encoded subunit of CI (NADH dehydrogenase ubiquinone Fe-S protein 4), typically suffer from Leigh syndrome, a neurodegenerative disease with onset in infancy or early childhood. Mitochondria from NDUFS4 patients usually lack detectable NDUFS4 protein and show a CI stability/assembly defect. Here, we describe a recessive mouse phenotype caused by the insertion of a transposable element into Ndufs4, identified by a novel combined linkage and expression analysis. Designated Ndufs4(fky), the mutation leads to aberrant transcript splicing and absence of NDUFS4 protein in all tissues tested of homozygous mice. Physical and behavioral symptoms displayed by Ndufs4(fky/fky) mice include temporary fur loss, growth retardation, unsteady gait, and abnormal body posture when suspended by the tail. Analysis of CI in Ndufs4(fky/fky) mice using blue native PAGE revealed the presence of a faster migrating crippled complex. This crippled CI was shown to lack subunits of the "N assembly module", which contains the NADH binding site, but contained two assembly factors not present in intact CI. Metabolomic analysis of the blood by tandem mass spectrometry showed increased hydroxyacylcarnitine species, implying that the CI defect leads to an imbalanced NADH/NAD(+) ratio that inhibits mitochondrial fatty acid β-oxidation.
Resumo:
In 1903, the eastern slope of Turtle Mountain (Alberta) was affected by a 30 M m3-rockslide named Frank Slide that resulted in more than 70 casualties. Assuming that the main discontinuity sets, including bedding, control part of the slope morphology, the structural features of Turtle Mountain were investigated using a digital elevation model (DEM). Using new landscape analysis techniques, we have identified three main joint and fault sets. These results are in agreement with those sets identified through field observations. Landscape analysis techniques, using a DEM, confirm and refine the most recent geology model of the Frank Slide. The rockslide was initiated along bedding and a fault at the base of the slope and propagated up slope by a regressive process following a surface composed of pre-existing discontinuities. The DEM analysis also permits the identification of important geological structures along the 1903 slide scar. Based on the so called Sloping Local Base Level (SLBL) an estimation was made of the present unstable volumes in the main scar delimited by the cracks, and around the south area of the scar (South Peak). The SLBL is a method permitting a geometric interpretation of the failure surface based on a DEM. Finally we propose a failure mechanism permitting the progressive failure of the rock mass that considers gentle dipping wedges (30°). The prisms or wedges defined by two discontinuity sets permit the creation of a failure surface by progressive failure. Such structures are more commonly observed in recent rockslides. This method is efficient and is recommended as a preliminary analysis prior to field investigation.
Resumo:
The World Health Organization (WHO) criteria for the diagnosis of osteoporosis are mainly applicable for dual X-ray absorptiometry (DXA) measurements at the spine and hip levels. There is a growing demand for cheaper devices, free of ionizing radiation such as promising quantitative ultrasound (QUS). In common with many other countries, QUS measurements are increasingly used in Switzerland without adequate clinical guidelines. The T-score approach developed for DXA cannot be applied to QUS, although well-conducted prospective studies have shown that ultrasound could be a valuable predictor of fracture risk. As a consequence, an expert committee named the Swiss Quality Assurance Project (SQAP, for which the main mission is the establishment of quality assurance procedures for DXA and QUS in Switzerland) was mandated by the Swiss Association Against Osteoporosis (ASCO) in 2000 to propose operational clinical recommendations for the use of QUS in the management of osteoporosis for two QUS devices sold in Switzerland. Device-specific weighted "T-score" based on the risk of osteoporotic hip fractures as well as on the prediction of DXA osteoporosis at the hip, according to the WHO definition of osteoporosis, were calculated for the Achilles (Lunar, General Electric, Madison, Wis.) and Sahara (Hologic, Waltham, Mass.) ultrasound devices. Several studies (totaling a few thousand subjects) were used to calculate age-adjusted odd ratios (OR) and area under the receiver operating curve (AUC) for the prediction of osteoporotic fracture (taking into account a weighting score depending on the design of the study involved in the calculation). The ORs were 2.4 (1.9-3.2) and AUC 0.72 (0.66-0.77), respectively, for the Achilles, and 2.3 (1.7-3.1) and 0.75 (0.68-0.82), respectively, for the Sahara device. To translate risk estimates into thresholds for clinical application, 90% sensitivity was used to define low fracture and low osteoporosis risk, and a specificity of 80% was used to define subjects as being at high risk of fracture or having osteoporosis at the hip. From the combination of the fracture model with the hip DXA osteoporotic model, we found a T-score threshold of -1.2 and -2.5 for the stiffness (Achilles) determining, respectively, the low- and high-risk subjects. Similarly, we found a T-score at -1.0 and -2.2 for the QUI index (Sahara). Then a screening strategy combining QUS, DXA, and clinical factors for the identification of women needing treatment was proposed. The application of this approach will help to minimize the inappropriate use of QUS from which the whole field currently suffers.
Resumo:
Limited information is available regarding the methodology required to characterize hashish seizures for assessing the presence or the absence of a chemical link between two seizures. This casework report presents the methodology applied for assessing that two different police seizures were coming from the same block before this latter one was split. The chemical signature was extracted using GC-MS analysis and the implemented methodology consists in a study of intra- and inter-variability distributions based on the measurement of the chemical profiles similarity using a number of hashish seizures and the calculation of the Pearson correlation coefficient. Different statistical scenarios (i.e., a combination of data pretreatment techniques and selection of target compounds) were tested to find the most discriminating one. Seven compounds showing high discrimination capabilities were selected on which a specific statistical data pretreatment was applied. Based on the results, the statistical model built for comparing the hashish seizures leads to low error rates. Therefore, the implemented methodology is suitable for the chemical profiling of hashish seizures.
Resumo:
The purpose of this study was to develop a two-compartment metabolic model of brain metabolism to assess oxidative metabolism from [1-(11)C] acetate radiotracer experiments, using an approach previously applied in (13)C magnetic resonance spectroscopy (MRS), and compared with an one-tissue compartment model previously used in brain [1-(11)C] acetate studies. Compared with (13)C MRS studies, (11)C radiotracer measurements provide a single uptake curve representing the sum of all labeled metabolites, without chemical differentiation, but with higher temporal resolution. The reliability of the adjusted metabolic fluxes was analyzed with Monte-Carlo simulations using synthetic (11)C uptake curves, based on a typical arterial input function and previously published values of the neuroglial fluxes V(tca)(g), V(x), V(nt), and V(tca)(n) measured in dynamic (13)C MRS experiments. Assuming V(x)(g)=10 × V(tca)(g) and V(x)(n)=V(tca)(n), it was possible to assess the composite glial tricarboxylic acid (TCA) cycle flux V(gt)(g) (V(gt)(g)=V(x)(g) × V(tca)(g)/(V(x)(g)+V(tca)(g))) and the neurotransmission flux V(nt) from (11)C tissue-activity curves obtained within 30 minutes in the rat cortex with a beta-probe after a bolus infusion of [1-(11)C] acetate (n=9), resulting in V(gt)(g)=0.136±0.042 and V(nt)=0.170±0.103 μmol/g per minute (mean±s.d. of the group), in good agreement with (13)C MRS measurements.
Resumo:
We present a novel hybrid (or multiphysics) algorithm, which couples pore-scale and Darcy descriptions of two-phase flow in porous media. The flow at the pore-scale is described by the Navier?Stokes equations, and the Volume of Fluid (VOF) method is used to model the evolution of the fluid?fluid interface. An extension of the Multiscale Finite Volume (MsFV) method is employed to construct the Darcy-scale problem. First, a set of local interpolators for pressure and velocity is constructed by solving the Navier?Stokes equations; then, a coarse mass-conservation problem is constructed by averaging the pore-scale velocity over the cells of a coarse grid, which act as control volumes; finally, a conservative pore-scale velocity field is reconstructed and used to advect the fluid?fluid interface. The method relies on the localization assumptions used to compute the interpolators (which are quite straightforward extensions of the standard MsFV) and on the postulate that the coarse-scale fluxes are proportional to the coarse-pressure differences. By numerical simulations of two-phase problems, we demonstrate that these assumptions provide hybrid solutions that are in good agreement with reference pore-scale solutions and are able to model the transition from stable to unstable flow regimes. Our hybrid method can naturally take advantage of several adaptive strategies and allows considering pore-scale fluxes only in some regions, while Darcy fluxes are used in the rest of the domain. Moreover, since the method relies on the assumption that the relationship between coarse-scale fluxes and pressure differences is local, it can be used as a numerical tool to investigate the limits of validity of Darcy's law and to understand the link between pore-scale quantities and their corresponding Darcy-scale variables.
Resumo:
La créatine joue un rôle essentiel dans le métabolisme cellulaire par sa conversion, par la creatine kinase, en phosphocreatine permettant la régénération de l'ATP. La synthèse de créatine, chez les mammifères, s'effectue par une réaction en deux étapes impliquant Γ arginine: glycine amidinotransférase (AGAT) et la guanidinoacétate méthyltransférase (GAMT). L'entrée de créatine dans les cellules s'effectue par son transporteur, SLC6A8. Les déficiences en créatine, dues au déficit en GAMT, AGAT ou SLC6A8, sont fréquentes et caractérisées par une absence ou une forte baisse de créatine dans le système nerveux central. Alors qu'il est connu que AGAT, GAMT et SLC6A8 sont exprimés par le cerveau, les conséquences des déficiences en créatine sur les cellules nerveuses sont peu comprises. Le but de ce travail était de développer de nouveaux modèles expérimentaux des déficiences en Cr dans des cultures 3D de cellules nerveuses de rat en agrégats au moyen de l'interférence à l'ARN appliquée aux gènes GAMT et SLC6A8. Des séquences interférentes (shRNAs) pour les gènes GAMT et SLC6A8 ont été transduites par des vecteurs viraux AAV (virus adéno-associés), dans les cellules nerveuses en agrégats. Nous avons ainsi démontré une baisse de l'expression de GAMT au niveau protéique (mesuré par western blot), et ARN messager (mesuré par qPCR) ainsi qu'une variation caractérisitique de créatine et guanidinoacétate (mesuré par spectrométrie de masse). Après avoir validé nos modèles, nous avons montré que les knockdown de GAMT ou SLC6A8 affectent le développement des astrocytes et des neurones ou des oligodendrocytes et des astrocytes, respectivement, ainsi qu'une augmentation de la mort cellulaire et des modifications dans le pattern d'activation des voies de signalisation impliquant caspase 3 et p38 MAPK, ayant un rôle dans le processus d'apoptose. - Creatine plays essential roles in energy metabolism by the interconversion, by creatine kinase, to its phosphorylated analogue, phosphocreatine, allowing the regeneration of ATP. Creatine is synthesized in mammals by a two step mechanism involving arginine:glycine amidinotransferase (AGAT) and guanidinoacetate methyltransferase (GAMT). Creatine is taken up by cells by a specific transporter, SLC6A8. Creatine deficiency syndromes, due to defects in GAMT, AGAT and SLC6A8, are among the most frequent inborn errors of metabolism, and are characterized by an absence or a severe decrease of creatine in central nervous system, which is the main tissue affected. While it is known that AGAT, GAMT and SLC6A8 are expressed in CNS, many questions remain on the specific effects of AGAT, GAMT and SLC6A8 deficiencies on brain cells. Our aim was to develop new experimental models of creatine deficiencies by knockdown of GAMT and SLC6A8 genes by RNAi in 3D organotypic rat brain cell cultures in aggregates. Specific shRNAs for the GAMT and SLC6A8 genes were transduced in brain cell aggregates by adeno-associated viruses (AAV). The AAV-transduced shRNAs were able to efficiently knockdown the expression of our genes of interest, as shown by a strong decrease of protein by western blotting, a decrease of mRNA by qPCR or characteristic variations of creatine and guanidinoacetate by tandem mass spectrometry. After having validated our experimental models, we have also shown that GAMT and SLC6A8 knockdown affected the development of astrocytes and neurons or oligodendrocytes and astrocytes, respectively. We also observed an increase of cell death and variations in activation pattern of caspase 3 and p38 MAPK pathways, involved in apoptosis, in our experimental model.
Resumo:
We studied the influence of signal variability on human and model observers for detection tasks with realistic simulated masses superimposed on real patient mammographic backgrounds and synthesized mammographic backgrounds (clustered lumpy backgrounds, CLB). Results under the signal-known-exactly (SKE) paradigm were compared with signal-known-statistically (SKS) tasks for which the observers did not have prior knowledge of the shape or size of the signal. Human observers' performance did not vary significantly when benign masses were superimposed on real images or on CLB. Uncertainty and variability in signal shape did not degrade human performance significantly compared with the SKE task, while variability in signal size did. Implementation of appropriate internal noise components allowed the fit of model observers to human performance.
Resumo:
The development of model observers for mimicking human detection strategies has followed from symmetric signals in simple noise to increasingly complex backgrounds. In this study we implement different model observers for the complex task of detecting a signal in a 3D image stack. The backgrounds come from real breast tomosynthesis acquisitions and the signals were simulated and reconstructed within the volume. Two different tasks relevant to the early detection of breast cancer were considered: detecting an 8 mm mass and detecting a cluster of microcalcifications. The model observers were calculated using a channelized Hotelling observer (CHO) with dense difference-of-Gaussian channels, and a modified (Partial prewhitening [PPW]) observer which was adapted to realistic signals which are not circularly symmetric. The sustained temporal sensitivity function was used to filter the images before applying the spatial templates. For a frame rate of five frames per second, the only CHO that we calculated performed worse than the humans in a 4-AFC experiment. The other observers were variations of PPW and outperformed human observers in every single case. This initial frame rate was a rather low speed and the temporal filtering did not affect the results compared to a data set with no human temporal effects taken into account. We subsequently investigated two higher speeds at 5, 15 and 30 frames per second. We observed that for large masses, the two types of model observers investigated outperformed the human observers and would be suitable with the appropriate addition of internal noise. However, for microcalcifications both only the PPW observer consistently outperformed the humans. The study demonstrated the possibility of using a model observer which takes into account the temporal effects of scrolling through an image stack while being able to effectively detect a range of mass sizes and distributions.
Resumo:
Recognition systems play a key role in a range of biological processes, including mate choice, immune defence and altruistic behaviour. Social insects provide an excellent model for studying recognition systems because workers need to discriminate between nestmates and non-nestmates, enabling them to direct altruistic behaviour towards closer kin and to repel potential invaders. However, the level of aggression directed towards conspecific intruders can vary enormously, even among workers within the same colony. This is usually attributed to differences in the aggression thresholds of individuals or to workers having different roles within the colony. Recent evidence from the weaver ant Oecophylla smaragdina suggests that this does not tell the whole story. Here I propose a new model for nestmate recognition based on a vector template derived from both the individual's innate odour and the shared colony odour. This model accounts for the recent findings concerning weaver ants, and also provides an alternative explanation for why the level of aggression expressed by a colony decreases as the diversity within the colony increases, even when odour is well-mixed. The model makes additional predictions that are easily tested, and represents a significant advance in our conceptualisation of recognition systems.
Resumo:
An impaired glutathione (GSH) synthesis was observed in several multifactorial diseases, including schizophrenia and myocardial infarction. Genetic studies revealed an association between schizophrenia and a GAG trinucleotide repeat (TNR) polymorphism in the catalytic subunit (GCLC) of the glutamate cysteine ligase (GCL). Disease-associated genotypes of this polymorphism correlated with a decrease in GCLC protein expression, GCL activity and GSH content. To clarify consequences of a decreased GCL activity at the proteome level, three schizophrenia patients and three controls have been selected based on the GCLC GAG TNR polymorphism. Fibroblast cultures were obtained by skin biopsy and were challenged with tert-butylhydroquinone (t-BHQ), a substance known to induce oxidative stress. Proteome changes were analyzed by two dimensional gel electrophoresis (2-DE) and results revealed 10 spots that were upregulated in patients following t-BHQ treatment, but not in controls. Nine corresponding proteins could be identified by MALDI mass spectrometry and these proteins are involved in various cellular functions, including energy metabolism, oxidative stress response, and cytoskeletal reorganization. In conclusion, skin fibroblasts of subjects with an impaired GSH synthesis showed an altered proteome reaction in response to oxidative stress. Furthermore, the study corroborates the use of fibroblasts as an additional mean to study vulnerability factors of psychiatric diseases.