239 resultados para transcranial magnetic stimulation (TMS)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Controlled transcranial stimulation of the brain is part of clinical treatment strategies in neuropsychiatric diseases such as depression, stroke, or Parkinson's disease. Manipulating brain activity by transcranial stimulation, however, inevitably influences other control centers of various neuronal and neurohormonal feedback loops and therefore may concomitantly affect systemic metabolic regulation. Because hypothalamic adenosine triphosphate-sensitive potassium channels, which function as local energy sensors, are centrally involved in the regulation of glucose homeostasis, we tested whether transcranial direct current stimulation (tDCS) causes an excitation-induced transient neuronal energy depletion and thus influences systemic glucose homeostasis and related neuroendocrine mediators.METHODS: In a crossover design testing 15 healthy male volunteers, we increased neuronal excitation by anodal tDCS versus sham and examined cerebral energy consumption with (31)phosphorus magnetic resonance spectroscopy. Systemic glucose uptake was determined by euglycemic-hyperinsulinemic glucose clamp, and neurohormonal measurements comprised the parameters of the stress systems.RESULTS: We found that anodic tDCS-induced neuronal excitation causes an energetic depletion, as quantified by (31)phosphorus magnetic resonance spectroscopy. Moreover, tDCS-induced cerebral energy consumption promotes systemic glucose tolerance in a standardized euglycemic-hyperinsulinemic glucose clamp procedure and reduces neurohormonal stress axes activity.CONCLUSIONS: Our data demonstrate that transcranial brain stimulation not only evokes alterations in local neuronal processes but also clearly influences downstream metabolic systems regulated by the brain. The beneficial effects of tDCS on metabolic features may thus qualify brain stimulation as a promising nonpharmacologic therapy option for drug-induced or comorbid metabolic disturbances in various neuropsychiatric diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Unipolar depression is among the leading cause of invalidity and disability-adjusted life-years. Many depressed patients do not respond to several antidepressant treatments. Several treatments have been investigated in resistant depression using electrical or magnetic stimulation of the brain. In this field, electroconvulsivotherapy remains to date the only treatment validated for efficacy and security. Novel neuromodulatory treatments used in neurological conditions are currently under investigation. Vagus nerve stimulation and deep brain stimulation may offer long-term efficacy and therefore justify expensive and highly specialized treatment programs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Respiratory muscle weakness may induce dyspnoea, secretion retention and respiratory failure. Assessing respiratory muscle strength is mandatory in neuromuscular diseases and in case of unexplained dyspnoea. A step by step approach is recommended, starting with simple volitional tests. Using spirometry, respiratory muscle weakness may be suspected on the basis of an abnormal flow-volume loop or a fall of supine vital capacity. When normal, maximal inspiratory and expiratory pressures against a near complete occlusion exclude significant muscle weakness, but low values are more difficult to interpret. Sniff nasal inspiratory pressure is a useful alternative because it is easy and it eliminates the problem of air leaks around the mouthpiece in patients with neuromuscular disorders. The strength available for coughing is easily assessed by measuring peak cough flow. In most cases, these simple non invasive tests are sufficient to confirm or to eliminate significant respiratory muscle weakness and help the timely introduction of ventilatory support or assisted cough techniques. In a minority of patients, a more complete evaluation is necessary using non volitional tests like cervical magnetic stimulation of phrenic nerves.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: Neuroimaging studies show cerebellar activations in a wide range of cognitive tasks and patients with cerebellar lesions often present cognitive deficits suggesting a cerebellar role in higher-order cognition. OBJECTIVE: We used cathodal transcranial direct current stimulation (tDCS), known to inhibit neuronal excitability, over the cerebellum to investigate if cathodal tDCS impairs verbal working memory, an important higher-order cognitive faculty. METHOD: We tested verbal working memory as measured by forward and backward digit spans in 40 healthy young participants before and after applying cathodal tDCS (2 mA, stimulation duration 25 min) to the right cerebellum using a randomized, sham-controlled, double-blind, cross-over design. In addition, we tested the effect of cerebellar tDCS on word reading, finger tapping and a visually cued sensorimotor task. RESULTS: In line with lower digit spans in patients with cerebellar lesions, cerebellar tDCS reduced forward digit spans and blocked the practice dependent increase in backward digit spans. No effects of tDCS on word reading, finger tapping or the visually cued sensorimotor task were found. CONCLUSION: Our results support the view that the cerebellum contributes to verbal working memory as measured by forward and backward digit spans. Moreover, the induction of reversible "virtual cerebellar lesions" in healthy individuals by means of tDCS may improve our understanding of the mechanistic basis of verbal working memory deficits in patients with cerebellar lesions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The treatment of writer's cramp, a task-specific focal hand dystonia, needs new approaches. A deficiency of inhibition in the motor cortex might cause writer's cramp. Transcranial direct current stimulation modulates cortical excitability and may provide a therapeutic alternative. In this randomized, double-blind, sham-controlled study, we investigated the efficacy of cathodal stimulation of the contralateral motor cortex in 3 sessions in 1 week. Assessment over a 2-week period included clinical scales, subjective ratings, kinematic handwriting analysis, and neurophysiological evaluation. Twelve patients with unilateral dystonic writer's cramp were investigated; 6 received transcranial direct current and 6 sham stimulation. Cathodal transcranial direct current stimulation had no favorable effects on clinical scales and failed to restore normal handwriting kinematics and cortical inhibition. Subjective worsening remained unexplained, leading to premature study termination. Repeated sessions of cathodal transcranial direct current stimulation of the motor cortex yielded no favorable results supporting a therapeutic potential in writer's cramp.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

INTRODUCTION: As it might lead to less discomfort, magnetic nerve stimulation (MNS) is increasingly used as an alternative to electrical stimulation methods. Yet, MNS and electrical nerve stimulation (ENS) and electrical muscle stimulation (EMS) have not been formally compared for the evaluation of plantar flexor neuromuscular function. METHODS: We quantified plantar flexor neuromuscular function with ENS, EMS and MNS in 10 volunteers in fresh and fatigued muscles. Central alterations were assessed through changes in voluntary activation level (VAL) and peripheral function through changes in M-wave, twitch and doublet (PS100) amplitudes. Discomfort associated with 100-Hz paired stimuli delivered with each method was evaluated on a 10-cm visual analog scale. RESULTS: VAL, agonist and antagonist M-wave amplitudes and PS100 were similar between the different methods in both fresh and fatigued states. Potentiated peak twitch was lower in EMS compared to ENS, whereas no difference was found between ENS and MNS for any parameter. Discomfort associated with MNS (1.5 ± 1.4 cm) was significantly less compared to ENS (5.5 ± 1.9 cm) and EMS (4.2 ± 2.6 cm) (p < 0.05). CONCLUSION: When PS100 is used to evaluate neuromuscular properties, MNS, EMS and ENS can be used interchangeably for plantar flexor neuromuscular function assessment as they provide similar evaluation of central and peripheral factors in unfatigued and fatigued states. Importantly, electrical current spread to antagonist muscles was similar between the three methods while discomfort from MNS was much less compared to ENS and EMS. MNS may be potentially employed to assess neuromuscular function of plantar flexor muscles in fragile populations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: Tinnitus is an often disabling condition for which there is no effective therapy. Current research suggests that tinnitus may develop due to maladaptive plastic changes and altered activity in the auditory and prefrontal cortex. Transcranial direct current stimulation (tDCS) modulates brain activity and has been shown to transiently suppress tinnitus in trials. OBJECTIVE: To investigate the efficacy and safety of tDCS in the treatment of chronic subjective tinnitus. METHODS: In a randomized, parallel, double-blind, sham-controlled study, the efficacy and safety of cathodal tDCS to the auditory cortex with anode over the prefrontal cortex was investigated in five sessions over five consecutive days. Tinnitus was assessed after the last session on day 5, and at follow-up visits 1 and 3 months post stimulation using the Tinnitus Handicap Inventory (THI, primary outcome measure), Subjective Tinnitus Severity Scale, Hospital Anxiety and Depression scale, Visual Analogue Scale, and Clinical Global Impression scale. RESULTS: 42 patients were investigated, 21 received tDCS and 21 sham stimulation. There were no beneficial effects of tDCS on tinnitus as assessed by primary and secondary outcome measures. Effect size assessed with Cohen's d amounted to 0.08 (95% CI: -0.52 to 0.69) at 1 month and 0.18 (95% CI: -0.43 to 0.78) at 3 months for the THI. CONCLUSION: tDCS of the auditory and prefrontal cortices is safe, but does not improve tinnitus. Different tDCS protocols might be beneficial.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The current study investigates a new model of barrel cortex activation using stimulation of the infraorbital branch of the trigeminal nerve. A robust and reproducible activation of the rat barrel cortex was obtained following trigeminal nerve stimulation. Blood oxygen level-dependent (BOLD) effects were obtained in the primary somatosensory barrel cortex (S1BF), the secondary somatosensory cortex (S2) and the motor cortex. These cortical areas were reached from afferent pathways from the trigeminal ganglion, the trigeminal nuclei and thalamic nuclei from which neurons project their axons upon whisker stimulation. The maximum BOLD responses were obtained for a stimulus frequency of 1 Hz, a stimulus pulse width of 100 μs and for current intensities between 1.5 and 3 mA. The BOLD response was nonlinear as a function of frequency and current intensity. Additionally, modeling BOLD responses in the rat barrel cortex from separate cerebral blood flow (CBF) and cerebral metabolic rate of oxygen (CMRO(2)) measurements showed good agreement with the shape and amplitude of measured BOLD responses as a function of stimulus frequency and will potentially allow to identify the sources of BOLD nonlinearities. Activation of the rat barrel cortex using trigeminal nerve stimulation will contribute to the interpretation of the BOLD signals from functional magnetic resonance imaging studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Many patients with an implantable cardioverter-defibrillator (ICD) have indications for magnetic resonance imaging (MRI). However, MRI is generally contraindicated in ICD patients because of potential risks from hazardous interactions between the MRI and ICD system. OBJECTIVE: The purpose of this study was to use preclinical computer modeling, animal studies, and bench and scanner testing to demonstrate the safety of an ICD system developed for 1.5-T whole-body MRI. METHODS: MRI hazards were assessed and mitigated using multiple approaches: design decisions to increase safety and reliability, modeling and simulation to quantify clinical MRI exposure levels, animal studies to quantify the physiologic effects of MRI exposure, and bench testing to evaluate safety margin. RESULTS: Modeling estimated the incidence of a chronic change in pacing capture threshold >0.5V and 1.0V to be less than 1 in 160,000 and less than 1 in 1,000,000 cases, respectively. Modeling also estimated the incidence of unintended cardiac stimulation to occur in less than 1 in 1,000,000 cases. Animal studies demonstrated no delay in ventricular fibrillation detection and no reduction in ventricular fibrillation amplitude at clinical MRI exposure levels, even with multiple exposures. Bench and scanner testing demonstrated performance and safety against all other MRI-induced hazards. CONCLUSION: A preclinical strategy that includes comprehensive computer modeling, animal studies, and bench and scanner testing predicts that an ICD system developed for the magnetic resonance environment is safe and poses very low risks when exposed to 1.5-T normal operating mode whole-body MRI.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

After the landmark studies reporting changes in the cerebral metabolic rate of glucose (CMRGlc ) in excess of those in oxygen (CMRO2 ) during physiological stimulation, several studies have examined the fate of the extra carbon taken up by the brain, reporting a wide range of changes in brain lactate from 20% to 250%. The present study reports functional magnetic resonance spectroscopy measurements at 7 Tesla using the enhanced sensitivity to study a small cohort (n = 6). Small increases in lactate (19% ± 4%, P < 0.05) and glutamate (4% ± 1%, P < 0.001) were seen within the first 2 min of activation. With the exception of glucose (12% ± 5%, P < 0.001), no other metabolite concentration changes beyond experimental error were significantly observed. Therefore, the present study confirms that lactate and glutamate changes during physiological stimulation are small (i.e. below 20%) and shows that the increased sensitivity allows reproduction of previous results with fewer subjects. In addition, the initial rate of glutamate and lactate concentration increases implies an increase in CMRO2 that is slightly below that of CMRGlc during the first 1-2 min of activation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this study was to evaluate the efficiency and the effects of changes in parameters of chronic amygdala-hippocampal deep brain stimulation (AH-DBS) in mesial temporal lobe epilepsy (TLE). Eight pharmacoresistant patients, not candidates for ablative surgery, received chronic AH-DBS (130 Hz, follow-up 12-24 months): two patients with hippocampal sclerosis (HS) and six patients with non-lesional mesial TLE (NLES). The effects of stepwise increases in intensity (0-Off to 2 V) and stimulation configuration (quadripolar and bipolar), on seizure frequency and neuropsychological performance were studied. The two HS patients obtained a significant decrease (65-75%) in seizure frequency with high voltage bipolar DBS (≥1 V) or with quadripolar stimulation. Two out of six NLES patients became seizure-free, one of them without stimulation, suggesting a microlesional effect. Two NLES patients experienced reductions of seizure frequency (65-70%), whereas the remaining two showed no significant seizure reduction. Neuropsychological evaluations showed reversible memory impairments in two patients under strong stimulation only. AH-DBS showed long-term efficiency in most of the TLE patients. It is a valuable treatment option for patients who suffer from drug resistant epilepsy and who are not candidates for resective surgery. The effects of changes in the stimulation parameters suggest that a large zone of stimulation would be required in HS patients, while a limited zone of stimulation or even a microlesional effect could be sufficient in NLES patients, for whom the importance of the proximity of the electrode to the epileptogenic zone remains to be studied. Further studies are required to ascertain these latter observations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the past 20 years, BOLD fMRI has developed towards a central and fundamental tool in neuroscience. It has been shown that the BOLD response provides an indicator of neuronal activity in the brain. Consequently, for an accurate interpretation of findings in BOLD MRI experiments and to draw meaningful conclusions about the temporal evolution of neural events, a deep understanding of the nature of the BOLD contrast has become of essential importance. Since the dynamics of the major direct determinants of the BOLD signal (CBF, CBV and CMRO(2)) range between seconds and minutes, long duration stimulation was an early key strategy needed to study and understand the BOLD characteristics. This paper summarizes and discusses the thoughts and rationales of the long duration stimulation studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT High frequency electrical deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a worldwide recognized therapy for the motor symptoms of Parkinson's disease in fluctuating patients who are progressively disabled despite medical treatment adjustments. However, such improvements emerge despite a lack of understanding of either the precise role of STN in human motor control or the mechanism(s) of action of DBS. Through the question "are we where we think we are", this thesis is first dedicated to the control of the position of the preoperatively defined target and of the implanted electrodes on magnetic resonance imaging (MRI). This anatomical approach will provide a way to identify more precisely the structure(s) involved by electrical stimulation. Then, a study of the correlation existing between the position of the preoperative target and the position of the electrode is performed. In this part, a unique opportunity is given to identify factors that may affect these correlation results. Finally, the whole work represents a « quality assessment » of the crucial steps of STN DBS: first, the target and the implanted electrode localisation procedures that have been developed in collaboration with the Radiological department; second the implantation procedure that has been performed nowadays on more than 50 parkinsonian patients in the Neurosurgical department of the Centre Hospitalier Universitaire Vaudois in collaboration with the Neurological department. This work is especially addressed to the multidisciplinary medical team involved in the surgical treatment of movement disorders, including also neurophysiologists, neuropsychologists and psychiatrists. RESUME La stimulation électrique à haute fréquence du noyau sous-thalamique est à ce jour mondialement reconnue pour le traitement des symptômes moteurs de la maladie de Parkinson chez des patients sévèrement atteints et chez qui la réponse fluctuante au traitement médicamenteux ne peut être améliorée de façon satisfaisante. Cependant, les résultats observés surviennent malgré une compréhension approximative et controversée du rôle réel du noyau sous-thalamique dans le contrôle du mouvement volontaire aussi bien que des mécanismes d'action de la stimulation cérébrale profonde. A travers la question « sommes-nous où nous pensons être », cette thèse est tout d'abord consacrée à l'étude du contrôle de la position de la cible définie avant l'intervention et de la position des électrodes implantées sur l'imagerie par résonance magnétique (IRM). Cette approche anatomique permettra d'identifier plus précisément la (les) structure(s) influencées par la stimulation électrique. Ensuite, une étude de la corrélation existant entre la position de la cible préopératoire et la position des électrodes implantées est effectuée. Elle a pour but de mettre en évidence les facteurs influençant les résultats de cette corrélation. Enfin, le travail dans son ensemble est un « contrôle de qualité » des étapes cruciales de la stimulation du noyau sous-thalamique : premièrement, des méthodes de localisation de la cible et des électrodes implantées effectuées sur IRM, développées en collaboration avec le service de Radiologie ; deuxièmement, de la méthode d'implantation utilisée à ce jour chez plus de 50 patients dans le service de Neurochirurgie du Centre Hospitalier Universitaire Vaudois en collaboration avec le service de Neurologie. Ce travail s'adresse spécialement aux équipes médicales pluridisciplinaires impliquées dans le traitement chirurgical des mouvements anormaux, incluant également des neurophysiologistes, des neuropsychologues et des psychiatres.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECT: The aim of this study was to evaluate the long-term safety and efficacy of bilateral contemporaneous deep brain stimulation (DBS) in patients who have levodopa-responsive parkinsonism with untreatable motor fluctuations. Bilateral pallidotomy carries a high risk of corticobulbar and cognitive dysfunction. Deep brain stimulation offers new alternatives with major advantages such as reversibility of effects, minimal permanent lesions, and adaptability to individual needs, changes in medication, side effects, and evolution of the disease. METHODS: Patients in whom levodopa-responsive parkinsonism with untreatable severe motor fluctuations has been clinically diagnosed underwent bilateral pallidal magnetic resonance image-guided electrode implantation while receiving a local anesthetic. Pre- and postoperative evaluations at 3-month intervals included Unified Parkinson's Disease Rating Scale (UPDRS) scoring, Hoehn and Yahr staging, 24-hour self-assessments, and neuropsychological examinations. Six patients with a mean age of 55 years (mean 42-67 years), a mean duration of disease of 15.5 years (range 12-21 years), a mean "on/off' Hoehn and Yahr stage score of 3/4.2 (range 3-5), and a mean "off' time of 40% (range 20-50%) underwent bilateral contemporaneous pallidal DBS, with a minimum follow-up period lasting 24 months (range 24-30 months). The mean dose of levodopa in these patients could not be changed significantly after the procedure and pergolide was added after 12 months in five patients because of recurring fluctuations despite adjustments in stimulation parameters. All but two patients had no fluctuations until 9 months. Two of the patients reported barely perceptible fluctuations at 12 months and two at 15 months; however, two patients remain without fluctuations at 2 years. The mean improvements in the UPDRS motor score in the off time and the activities of daily living (ADL) score were more than 50%; the mean off time decreased from 40 to 10%, and the mean dyskinesia and complication of treatment scores were reduced to one-third until pergolide was introduced at 12 months. No significant improvement in "on" scores was observed. A slight worsening after 1 year was observed and three patients developed levodopa- and stimulation-resistant gait ignition failure and minimal fluctuations at 1 year. Side effects, which were controlled by modulation of stimulation, included dysarthria, dystonia, and confusion. CONCLUSIONS: Bilateral pallidal DBS is safe and efficient in patients who have levodopa-responsive parkinsonism with severe fluctuations. Major improvements in motor score, ADL score, and off time persisted beyond 2 years after the operation, but signs of decreased efficacy started to be seen after 12 months.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the last five years, Deep Brain Stimulation (DBS) has become the most popular and effective surgical technique for the treatent of Parkinson's disease (PD). The Subthalamic Nucleus (STN) is the usual target involved when applying DBS. Unfortunately, the STN is in general not visible in common medical imaging modalities. Therefore, atlas-based segmentation is commonly considered to locate it in the images. In this paper, we propose a scheme that allows both, to perform a comparison between different registration algorithms and to evaluate their ability to locate the STN automatically. Using this scheme we can evaluate the expert variability against the error of the algorithms and we demonstrate that automatic STN location is possible and as accurate as the methods currently used.