255 resultados para thoracolumbar spine
Resumo:
STUDY DESIGN: Double-blind, placebo-controlled randomized clinical trial. OBJECTIVE: To assess the efficacy of 1 preoperative 1.5 g dose of cefuroxime in preventing surgical site infection after surgery for herniated disc. SUMMARY OF BACKGROUND DATA: Antibiotic prophylaxis was only tested in nonconclusive trials in this setting. METHODS: The study was conducted in 2 university hospitals in Switzerland. Patients were assessed for occurrence of surgical site infection (defined by the criteria of the Centers for Diseases Control and Prevention), other infections, or adverse events up to 6 months after surgery. Outcome measures were compared in a univariate, per-protocol analysis. RESULTS: Baseline characteristics were similar in patients allocated to cefuroxime (n = 613) or placebo (n = 624). Eight (1.3%) patients in the cefuroxime group and 18 patients (2.8%) in the placebo group developed a surgical site infection (P = 0.073). A diagnosis of spondylodiscitis or epidural abscess was made in 9 patients in the placebo group, but none in the cefuroxime group (P < 0.01), which corresponded to a number necessary to treat of 69 patients to prevent one of these infections. There were no significant adverse events attributed to either cefuroxime or placebo. CONCLUSION: A single, preoperative dose of cefuroxime significantly reduces the risk of organ-space infection, most notably spondylodiscitis, after surgery for herniated disc.
Resumo:
Age-related changes in lumbar vertebral microarchitecture are evaluated, as assessed by trabecular bone score (TBS), in a cohort of 5,942 French women. The magnitude of TBS decline between 45 and 85 years of age is piecewise linear in the spine and averaged 14.5 %. TBS decline rate increases after 65 years by 50 %. INTRODUCTION: This study aimed to evaluate age-related changes in lumbar vertebral microarchitecture, as assessed by TBS, in a cohort of French women aged 45-85 years. METHODS: An all-comers cohort of French Caucasian women was selected from two clinical centers. Data obtained from these centers were cross-calibrated for TBS and bone mineral density (BMD). BMD and TBS were evaluated at L1-L4 and for all lumbar vertebrae combined using GE-Lunar Prodigy densitometer images. Weight, height, and body mass index (BMI) also were determined. To validate our all-comers cohort, the BMD normative data of our cohort and French Prodigy data were compared. RESULTS: A cohort of 5,942 French women aged 45 to 85 years was created. Dual-energy X-ray absorptiometry normative data obtained for BMD from this cohort were not significantly different from French prodigy normative data (p = 0.15). TBS values at L1-L4 were poorly correlated with BMI (r = -0.17) and weight (r = -0.14) and not correlated with height. TBS values obtained for all lumbar vertebra combined (L1, L2, L3, L4) decreased with age. The magnitude of TBS decline at L1-L4 between 45 and 85 years of age was piecewise linear in the spine and averaged 14.5 %, but this rate increased after 65 years by 50 %. Similar results were obtained for other region of interest in the lumbar spine. As opposed to BMD, TBS was not affected by spinal osteoarthrosis. CONCLUSION: The age-specific reference curve for TBS generated here could therefore be used to help clinicians to improve osteoporosis patient management and to monitor microarchitectural changes related to treatment or other diseases in routine clinical practice.
Resumo:
Scrotal pain is frequently encountered in practice, as it affects 4 men in 1000, with a peak of incidence between the ages of 45 and 50. After excluding an urological or gastrointestinal cause, referred pain of musculoskeletal origin should be considered, even in the absence of back pain. Described by Dr. Robert Maigne, this referred pain originates from a minor intervertebral dysfunction of the thoracolumbar junction. Imaging of the spine is not helpful. Rather, the diagnosis is made by seeking pain triggered by the mobilization of the lumbar vertebrae; the pinch and roll skin manoeuvre will highlight this referred pain. Treatment is symptomatic, though manual therapies by spine specialists are also recommended.
Resumo:
Changes in bone mineral density and bone strength following treatment with zoledronic acid (ZOL) were measured by quantitative computed analysis (QCT) or dual-energy X-ray absorptiometry (DXA). ZOL treatment increased spine and hip BMD vs placebo, assessed by QCT and DXA. Changes in trabecular bone resulted in increased bone strength. INTRODUCTION: To investigate bone mineral density (BMD) changes in trabecular and cortical bone, estimated by quantitative computed analysis (QCT) or dual-energy X-ray absorptiometry (DXA), and whether zoledronic acid 5 mg (ZOL) affects bone strength. METHODS: In 233 women from a randomized, controlled trial of once-yearly ZOL, lumbar spine, total hip, femoral neck, and trochanter were assessed by DXA and QCT (baseline, Month 36). Mean percentage changes from baseline and between-treatment differences (ZOL vs placebo, t-test) were evaluated. RESULTS: Mean between-treatment differences for lumbar spine BMD were significant by DXA (7.0%, p < 0.01) and QCT (5.7%, p < 0.0001). Between-treatment differences were significant for trabecular spine (p = 0.0017) [non-parametric test], trabecular trochanter (10.7%, p < 0.0001), total hip (10.8%, p < 0.0001), and compressive strength indices at femoral neck (8.6%, p = 0.0001), and trochanter (14.1%, p < 0.0001). CONCLUSIONS: Once-yearly ZOL increased hip and spine BMD vs placebo, assessed by QCT vs DXA. Changes in trabecular bone resulted in increased indices of compressive strength.
Resumo:
INTRODUCTION: Quantitative sensory testing (QST) is widely used in human research to investigate the integrity of the sensory function in patients with pain of neuropathic origin, or other causes such as low back pain. Reliability of QST has been evaluated on both sides of the face, hands and feet as well as on the trunk (Th3-L3). In order to apply these tests on other body-parts such as the lower lumbar spine, it is important first to establish reliability on healthy individuals. The aim of this study was to investigate intra-rater reliability of thermal QST in healthy adults, on two sites within the L5 dermatome of the lumbar spine and lower extremity. METHODS: Test-retest reliability of thermal QST was determined at the L5-level of the lumbar spine and in the same dermatome on the lower extremity in 30 healthy persons under 40 years of age. Results were analyzed using descriptive statistics and intraclass correlation coefficient (ICC). Values were compared to normative data, using Z-transformation. RESULTS: Mean intraindividual differences were small for cold and warm detection thresholds but larger for pain thresholds. ICC values showed excellent reliability for warm detection and heat pain threshold, good-to-excellent reliability for cold pain threshold and fair-to-excellent reliability for cold detection threshold. ICC had large ranges of confidence interval (95%). CONCLUSION: In healthy adults, thermal QST on the lumbar spine and lower extremity demonstrated fair-to-excellent test-retest reliability.
Resumo:
Fragile X syndrome (FXS) is characterized by intellectual disability and autistic traits, and results from the silencing of the FMR1 gene coding for a protein implicated in the regulation of protein synthesis at synapses. The lack of functional Fragile X mental retardation protein has been proposed to result in an excessive signaling of synaptic metabotropic glutamate receptors, leading to alterations of synapse maturation and plasticity. It remains, however, unclear how mechanisms of activity-dependent spine dynamics are affected in Fmr knockout (Fmr1-KO) mice and whether they can be reversed. Here we used a repetitive imaging approach in hippocampal slice cultures to investigate properties of structural plasticity and their modulation by signaling pathways. We found that basal spine turnover was significantly reduced in Fmr1-KO mice, but markedly enhanced by activity. Additionally, activity-mediated spine stabilization was lost in Fmr1-KO mice. Application of the metabotropic glutamate receptor antagonist α-Methyl-4-carboxyphenylglycine (MCPG) enhanced basal turnover, improved spine stability, but failed to reinstate activity-mediated spine stabilization. In contrast, enhancing phosphoinositide-3 kinase (PI3K) signaling, a pathway implicated in various aspects of synaptic plasticity, reversed both basal turnover and activity-mediated spine stabilization. It also restored defective long-term potentiation mechanisms in slices and improved reversal learning in Fmr1-KO mice. These results suggest that modulation of PI3K signaling could contribute to improve the cognitive deficits associated with FXS.
Resumo:
The loss of presynaptic markers is thought to represent a strong pathologic correlate of cognitive decline in Alzheimer's disease (AD). Spinophilin is a postsynaptic marker mainly located to the heads of dendritic spines. We assessed total numbers of spinophilin-immunoreactive puncta. in the CA I and CA3 fields of hippocampus and area 9 in 18 elderly individuals with various degrees of cognitive decline. The decrease in spinophilin-immunoreactivity was significantly related to both Braak neurofibrillary tangle (NFT) staging and clinical severity but not A beta deposition staging. The total number of spinophilin-immunoreactive puncta in CA I field and area 9 were significantly related to MMSE scores and predicted 23.5 and 61.9% of its variability. The relationship between total number of spinophilin-immunoreactive puncta in CA I field and MMSE scores did not persist when adjusting for Braak NFT staging. In contrast, the total number of spinophilin-immunoreactive puncta in area 9 was still significantly related to the cognitive outcome explaining an extra 9.6% of MMSE and 25.6% of the Clinical Dementia Rating scores variability. Our data suggest that neocortical dendritic spine loss is an independent parameter to consider in AD clinicopathologic correlations.
Resumo:
Fibreoptic intubation remains a key technique for the management of difficult intubation. We randomly compared the second generation single-use Ambu(®) aScope? 2 videoscope with a standard re-usable flexible intubating fibrescope in 50 tracheal intubations in patients with a difficult airway simulated by a semirigid collar. All patients' tracheas were intubated successfully with the aScope 2 or the re-usable fibrescope. The median (IQR [range]) time to intubate was significantly longer with the aScope 2 70 (55-97 [41?-226]) s vs 50 (40-59 [27-175]) s, p = 0.0003) due to an increased time to see the carina. Quality of vision was significantly lower with the aScope 2 (excellent 24 (48%) vs 49 (98%), p = 0.0001; good 22 (44%) vs 1 (2%), p = 0.0001; poor 4 (8%) vs 0, p = 0.12) but with no difference in the subjective ease to intubate (easy score of 31 (62%) vs 38 (76%), p = 0.19; intermediate 12 (24%) vs 7 (14%), p = 0.31; difficult 7 (14%) vs 5 (5%), p = 0.76). The longer times to intubate and the poorer scores for quality of vision do not support the use of the single-use aScope 2 videoscope as an alternative to the re-usable fibrescope.
Resumo:
Nonunion of anterior tibial spine of tibia in children is quite rare, but it could be associated with significant instability of the knee as it involves the fixation of anterior cruciate ligament. We report one case in which open reduction and internal fixation was carried out with good functional results. A literature review was performed to identify the cases reported of tibial eminence nonunion in children.
Resumo:
OBJECTIVE: To compare image quality of a standard-dose (SD) and a low-dose (LD) cervical spine CT protocol using filtered back-projection (FBP) and iterative reconstruction (IR). MATERIALS AND METHODS: Forty patients investigated by cervical spine CT were prospectively randomised into two groups: SD (120 kVp, 275 mAs) and LD (120 kVp, 150 mAs), both applying automatic tube current modulation. Data were reconstructed using both FBP and sinogram-affirmed IR. Image noise, signal-to-noise (SNR) and contrast-to-noise (CNR) ratios were measured. Two radiologists independently and blindly assessed the following anatomical structures at C3-C4 and C6-C7 levels, using a four-point scale: intervertebral disc, content of neural foramina and dural sac, ligaments, soft tissues and vertebrae. They subsequently rated overall image quality using a ten-point scale. RESULTS: For both protocols and at each disc level, IR significantly decreased image noise and increased SNR and CNR, compared with FBP. SNR and CNR were statistically equivalent in LD-IR and SD-FBP protocols. Regardless of the dose and disc level, the qualitative scores with IR compared with FBP, and with LD-IR compared with SD-FBP, were significantly higher or not statistically different for intervertebral discs, neural foramina and ligaments, while significantly lower or not statistically different for soft tissues and vertebrae. The overall image quality scores were significantly higher with IR compared with FBP, and with LD-IR compared with SD-FBP. CONCLUSION: LD-IR cervical spine CT provides better image quality for intervertebral discs, neural foramina and ligaments, and worse image quality for soft tissues and vertebrae, compared with SD-FBP, while reducing radiation dose by approximately 40 %.
Resumo:
Postsynaptic density 95 (PSD-95) is an important regulator of synaptic structure and plasticity. However, its contribution to synapse formation and organization remains unclear. Using a combined electron microscopic, genetic, and pharmacological approach, we uncover a new mechanism through which PSD-95 regulates synaptogenesis. We find that PSD-95 overexpression affected spine morphology but also promoted the formation of multiinnervated spines (MISs) contacted by up to seven presynaptic terminals. The formation of multiple contacts was specifically prevented by deletion of the PDZ(2) domain of PSD-95, which interacts with nitric oxide (NO) synthase (NOS). Similarly, PSD-95 overexpression combined with small interfering RNA-mediated down-regulation or the pharmacological blockade of NOS prevented axon differentiation into varicosities and multisynapse formation. Conversely, treatment of hippocampal slices with an NO donor or cyclic guanosine monophosphate analogue induced MISs. NOS blockade also reduced spine and synapse density in developing hippocampal cultures. These results indicate that the postsynaptic site, through an NOS-PSD-95 interaction and NO signaling, promotes synapse formation with nearby axons.