55 resultados para the linear logistic test model
Resumo:
Background : Numerous studies have shown that immune cells infiltrate the spinal cord after peripheral nerve injury and that they play a major contribution to sensory hypersensitivity in rodents. In particular, the role of monocyte-derived cells and T lymphocytes seems to be prominent in this process. This exciting new perspective in research on neuropathic pain opens many different areas of work, including the understanding of the function of these cells and how they impact on neural function. However, no systematic description of the time course or cell types that characterize this infiltration has been published yet, although this seems to be the rational first step of an overall understanding of the phenomenon. Objective : Describe the time course and cell characteristics of T lymphocyte infiltration in the spinal cord in the Spared Nerve Injury (SNI) model of neuropathic pain in rats. Methods : Collect of lumbar spinal cords of rats at days 2, 7, 21 and 40 after SNI or sham operation (n=4). Immunofluorescence detecting different proteins of T cell subgroups (CD2+CD4+, CD2+CD8+, Th1 markers, Th2 markers, Th17 markers). Quantification of the infiltration rate of the different subgroups. Expected results : First, we expect to see an infiltration of T cells in the spinal cord ipsilateral to nerve injury, higher in SNI rats than in sham animals. Second, we anticipate that different subtypes of T cells penetrate at different time points. Finally, the number of T lymphocytes are expected to decrease at the latest time point, showing a resolution of the process underlying their infiltrating the spinal cord in the first place. Impact : A systematic description of the infiltration of T cells in the spinal cord after peripheral nerve injury is needed to have a better understanding of the role of immune cells in neuropathic pain. The time course that we want to establish will provide the scientific community with new perspectives. First, it will confirm that T cells do indeed infiltrate the spinal cord after SNI in rats. Second, the type of T cells infiltrating at different time points will give clues about their function, in particular their inflammatory or anti-inflammatory profile. From there on, other studies could be lead, investigating the functional side of the specific subtypes put to light by us. Ultimately, this could lead to the discovery of new drugs targeting T cells or their infiltration, in the hope of improving neuropathic pain.
Resumo:
Lynch's (1980a) optimal-body-size model is designed to explain some major trends in cladoceran life histories; in particular the fact that large and littoral species seem to be bang-bang strategists (they grow first and the reproduce) whereas smaller planktonic species seem to be intermediate strategists (they grow and reproduce simultaneously). Predation is assumed to be an important selective pressure for these trends. Simocephalus vetulus (Müller) does not fit this pattern; being a littoral and relatively large species but an intermediate strategist. As shown by computer simulations, this species would reduce its per capita rate of increase by adopting the strategy predicted by the optimal-body-size model. Two aspects of the model are criticized: (1) the optimization criterion is shown to be incorrect and (2) the prediction of an intermediate strategy is not justified. Structural constraints are suggested to be responsible for the intermediate strategy of S.vetulus. Biotic interactions seem to have little effect on the observed life-history patterns of this species.
Resumo:
Diabetic retinopathy is associated with ocular inflammation, leading to retinal barrier breakdown, macular edema, and visual cell loss. We investigated the molecular mechanisms involved in microglia/macrophages trafficking in the retina and the role of protein kinase Cζ (PKCζ) in this process. Goto Kakizaki (GK) rats, a model for spontaneous type 2 diabetes were studied until 12 months of hyperglycemia. Up to 5 months, sparse microglia/macrophages were detected in the subretinal space, together with numerous pores in retinal pigment epithelial (RPE) cells, allowing inflammatory cell traffic between the retina and choroid. Intercellular adhesion molecule-1 (ICAM-1), caveolin-1 (CAV-1), and PKCζ were identified at the pore border. At 12 months of hyperglycemia, the significant reduction of pores density in RPE cell layer was associated with microglia/macrophages accumulation in the subretinal space together with vacuolization of RPE cells and disorganization of photoreceptors outer segments. The intraocular injection of a PKCζ inhibitor at 12 months reduced iNOS expression in microglia/macrophages and inhibited their migration through the retina, preventing their subretinal accumulation. We show here that a physiological transcellular pathway takes place through RPE cells and contributes to microglia/macrophages retinal trafficking. Chronic hyperglycemia causes alteration of this pathway and subsequent subretinal accumulation of activated microglia/macrophages.
Resumo:
As part of a European initiative (EuroVacc), we report the design, construction, and immunogenicity of two HIV-1 vaccine candidates based on a clade C virus strain (CN54) representing the current major epidemic in Asia and parts of Africa. Open reading frames encoding an artificial 160-kDa GagPolNef (GPN) polyprotein and the external glycoprotein gp120 were fully RNA and codon optimized. A DNA vaccine (DNA-GPN and DNA-gp120, referred to as DNA-C), and a replication-deficient vaccinia virus encoding both reading frames (NYVAC-C), were assessed regarding immunogenicity in Balb/C mice. The intramuscular administration of both plasmid DNA constructs, followed by two booster DNA immunizations, induced substantial T-cell responses against both antigens as well as Env-specific antibodies. Whereas low doses of NYVAC-C failed to induce specific CTL or antibodies, high doses generated cellular as well as humoral immune responses, but these did not reach the levels seen following DNA vaccination. The most potent immune responses were detectable using prime:boost protocols, regardless of whether DNA-C or NYVAC-C was used as the priming or boosting agent. These preclinical findings revealed the immunogenic response triggered by DNA-C and its enhancement by combining it with NYVAC-C, thus complementing the macaque preclinical and human phase I clinical studies of EuroVacc.
Resumo:
Vitamin K antagonists (VKAs) are prescribed worldwide and remain the oral anticoagulant of choice. These drugs are characterized by a narrow therapeutic index and a large inter- and intra-individual variability. P-glycoprotein could contribute to this variability. The aim of this study was to investigate the involvement of P-gp in the transport of acenocoumarol, phenprocoumon and warfarin using an in vitro Caco-2 cell monolayer model. These results were compared with those obtained with rivaroxaban, a new oral anticoagulant known to be a P-gp substrate. The transport of these four drugs was assessed at pH conditions 6.8/7.4 in the presence or absence of the P-gp inhibitor cyclosporine A (10 μM) and the more potent and specific P-gp inhibitor valspodar (5 μM). Analytical quantification was performed by LC/MS. With an efflux ratio of 1.7 and a significant decrease in the efflux (Papp B-A), in the presence of P-gp inhibitors at a concentration of 50 μM, acenocoumarol can be considered as a weak P-gp substrate. Concerning phenprocoumon, the results suggest that this molecule is a poor P-gp substrate. The P-gp inhibitors did not affect significantly the transport of warfarin. The efflux of rivaroxaban was strongly inhibited by the two P-gp inhibitors. In conclusion, none of the three VKAs tested are strong P-gp substrates. However, acenocoumarol can be considered as a weak P-gp substrate and phenprocoumon as a poor P-gp substrate.
Resumo:
The updated Vienna Prediction Model for estimating recurrence risk after an unprovoked venous thromboembolism (VTE) has been developed to identify individuals at low risk for VTE recurrence in whom anticoagulation (AC) therapy may be stopped after 3 months. We externally validated the accuracy of the model to predict recurrent VTE in a prospective multicenter cohort of 156 patients aged ≥65 years with acute symptomatic unprovoked VTE who had received 3 to 12 months of AC. Patients with a predicted 12-month risk within the lowest quartile based on the updated Vienna Prediction Model were classified as low risk. The risk of recurrent VTE did not differ between low- vs higher-risk patients at 12 months (13% vs 10%; P = .77) and 24 months (15% vs 17%; P = 1.0). The area under the receiver operating characteristic curve for predicting VTE recurrence was 0.39 (95% confidence interval [CI], 0.25-0.52) at 12 months and 0.43 (95% CI, 0.31-0.54) at 24 months. In conclusion, in elderly patients with unprovoked VTE who have stopped AC, the updated Vienna Prediction Model does not discriminate between patients who develop recurrent VTE and those who do not. This study was registered at www.clinicaltrials.gov as #NCT00973596.
Resumo:
For the past 10 years, mini-host models and in particular the greater wax moth Galleria mellonella have tended to become a surrogate for murine models of fungal infection mainly due to cost, ethical constraints and ease of use. Thus, methods to better assess the fungal pathogenesis in G. mellonella need to be developed. In this study, we implemented the detection of Candida albicans cells expressing the Gaussia princeps luciferase in its cell wall in infected larvae of G. mellonella. We demonstrated that detection and quantification of luminescence in the pulp of infected larvae is a reliable method to perform drug efficacy and C. albicans virulence assays as compared to fungal burden assay. Since the linearity of the bioluminescent signal, as compared to the CFU counts, has a correlation of R(2) = 0.62 and that this method is twice faster and less labor intensive than classical fungal burden assays, it could be applied to large scale studies. We next visualized and followed C. albicans infection in living G. mellonella larvae using a non-toxic and water-soluble coelenterazine formulation and a CCD camera that is commonly used for chemoluminescence signal detection. This work allowed us to follow for the first time C. albicans course of infection in G. mellonella during 4 days.
Resumo:
The determination of characteristic cardiac parameters, such as displacement, stress and strain distribution are essential for an understanding of the mechanics of the heart. The calculation of these parameters has been limited until recently by the use of idealised mathematical representations of biventricular geometries and by applying simple material laws. On the basis of 20 short axis heart slices and in consideration of linear and nonlinear material behaviour we have developed a FE model with about 100,000 degrees of freedom. Marching Cubes and Phong's incremental shading technique were used to visualise the three dimensional geometry. In a quasistatic FE analysis continuous distribution of regional stress and strain corresponding to the endsystolic state were calculated. Substantial regional variation of the Von Mises stress and the total strain energy were observed at all levels of the heart model. The results of both the linear elastic model and the model with a nonlinear material description (Mooney-Rivlin) were compared. While the stress distribution and peak stress values were found to be comparable, the displacement vectors obtained with the nonlinear model were generally higher in comparison with the linear elastic case indicating the need to include nonlinear effects.
Resumo:
SETTING: Ambulatory paediatric clinic in Lausanne, Switzerland, a country with a significant proportion of tuberculosis (TB) among immigrants. AIM: To assess the factors associated with positive tuberculin skin tests (TST) among children examined during a health check-up or during TB contact tracing, notably the influence of BCG vaccination (Bacille Calmette Guérin) and history of TB contact. METHOD: A descriptive study of children who had a TST (2 Units RT23) between November 2002 and April 2004. Age, sex, history of TB contact, BCG vaccination status, country of origin and birth outside Switzerland were recorded. RESULTS: Of 234 children, 176 (75%) had a reaction equal to zero and 31 (13%) tested positive (>10 mm). In a linear regression model, the size of the TST varied significantly according to the history of TB contact, age, TB incidence in the country of origin and BCG vaccination status but not according to sex or birth in or outside Switzerland. In a logistic regression model including all the recorded variables, age (Odds Ratio = 1.21, 95% CI 1.08; 1.35), a history of TB contact (OR = 7.31, 95% CI 2.23; 24) and the incidence of TB in the country of origin (OR = 1.01, 95% CI 1.00; 1.02) were significantly associated with a positive TST but sex (OR = 1.18, 95% CI 0.50; 2.78) and BCG vaccination status (OR = 2.97, 95% CI 0.91; 9.72) were not associated. CONCLUSIONS: TB incidence in the country of origin, BCG vaccination and age influence the TSTreaction (size or proportion of TST > or = 10 mm). However the most obvious risk factor for a positive TST is a history of contact with TB.
Resumo:
Rare species have restricted geographic ranges, habitat specialization, and/or small population sizes. Datasets on rare species distribution usually have few observations, limited spatial accuracy and lack of valid absences; conversely they provide comprehensive views of species distributions allowing to realistically capture most of their realized environmental niche. Rare species are the most in need of predictive distribution modelling but also the most difficult to model. We refer to this contrast as the "rare species modelling paradox" and propose as a solution developing modelling approaches that deal with a sufficiently large set of predictors, ensuring that statistical models aren't overfitted. Our novel approach fulfils this condition by fitting a large number of bivariate models and averaging them with a weighted ensemble approach. We further propose that this ensemble forecasting is conducted within a hierarchic multi-scale framework. We present two ensemble models for a test species, one at regional and one at local scale, each based on the combination of 630 models. In both cases, we obtained excellent spatial projections, unusual when modelling rare species. Model results highlight, from a statistically sound approach, the effects of multiple drivers in a same modelling framework and at two distinct scales. From this added information, regional models can support accurate forecasts of range dynamics under climate change scenarios, whereas local models allow the assessment of isolated or synergistic impacts of changes in multiple predictors. This novel framework provides a baseline for adaptive conservation, management and monitoring of rare species at distinct spatial and temporal scales.
Resumo:
Background: Glutathione (GSH), a major cellular redox regulator and antioxidant, is decreased in cerebrospinal fluid and prefrontal cortex of schizophrenia patients. The gene of the key GSH-synthesizing enzyme, glutamate-cysteine ligase, modifier (GCLM) subunit, is associated with schizophrenia, suggesting that the deficit in the GSH system is of genetic origin. Using the GCLM knock-out (KO) mouse as model system with 60% decreased brain GSH levels and, thus, strong vulnerability to oxidative stress, we have shown that GSH dysregulation results in abnormal mouse brain morphology (e.g., reduced parvalbumin, PV, immuno-reactivity in frontal areas) and function. Additional oxidative stress, induced by GBR12909 (a dopamine re-uptake inhibitor), enhances morphological changes even further. Aim: In the present study we use the GCLM KO mouse model system, asking now, whether GSH dysregulation also compromises mouse behaviour and cognition. Methods: Male and female wildtype (WT) and GCLM-KO mice are treated with GBR12909 or phosphate buffered saline (PBS) from postnatal day (P) 5 to 10, and are behaviourally tested at P 60 and older. Results: In comparison to WT, KO animals of both sexes are hyperactive in the open field, display more frequent open arm entries on the elevated plus maze, longer float latencies in the Porsolt swim test, and more frequent contacts of novel and familiar objects. Contrary to other reports of animal models with reduced PV immuno-reactivity, GCLM-KO mice display normal rule learning capacity and perform normally on a spatial recognition task. GCLM-KO mice do, however, show a strong deficit in object-recognition after a 15 minutes retention delay. GBR12909 treatment exerts no additional effect. Conclusions: The results suggest that animals with impaired regulation of brain oxidative stress are impulsive and have reduced behavioural control in novel, unpredictable contexts. Moreover, GSH dysregulation seems to induce a selective attentional or stimulus-encoding deficit: despite intensive object exploration, GCLM-KO mice cannot discriminate between novel and familiar objects. In conclusion, the present data indicate that GSH dysregulation may contribute to the manifestation of behavioural and cognitive anomalies that are associated with schizophrenia.