116 resultados para tBLMs, tether lipids, fluorescent labeled anchor lipids, diluted SAMs, LB-isotherms
Resumo:
BACKGROUND: Exercise prevents the adverse effects of a high-fructose diet through mechanisms that remain unknown. OBJECTIVE: We assessed the hypothesis that exercise prevents fructose-induced increases in very-low-density lipoprotein (VLDL) triglycerides by decreasing the fructose conversion into glucose and VLDL-triglyceride and fructose carbon storage into hepatic glycogen and lipids. DESIGN: Eight healthy men were studied on 3 occasions after 4 d consuming a weight-maintenance, high-fructose diet. On the fifth day, the men ingested an oral (13)C-labeled fructose load (0.75 g/kg), and their total fructose oxidation ((13)CO2 production), fructose storage (fructose ingestion minus (13)C-fructose oxidation), fructose conversion into blood (13)C glucose (gluconeogenesis from fructose), blood VLDL-(13)C palmitate (a marker of hepatic de novo lipogenesis), and lactate concentrations were monitored over 7 postprandial h. On one occasion, participants remained lying down throughout the experiment [fructose treatment alone with no exercise condition (NoEx)], and on the other 2 occasions, they performed a 60-min exercise either 75 min before fructose ingestion [exercise, then fructose condition (ExFru)] or 90 min after fructose ingestion [fructose, then exercise condition (FruEx)]. RESULTS: Fructose oxidation was significantly (P < 0.001) higher in the FruEx (80% ± 3% of ingested fructose) than in the ExFru (46% ± 1%) and NoEx (49% ± 1%). Consequently, fructose storage was lower in the FruEx than in the other 2 conditions (P < 0.001). Fructose conversion into blood (13)C glucose, VLDL-(13)C palmitate, and postprandial plasma lactate concentrations was not significantly different between conditions. CONCLUSIONS: Compared with sedentary conditions, exercise performed immediately after fructose ingestion increases fructose oxidation and decreases fructose storage. In contrast, exercise performed before fructose ingestion does not significantly alter fructose oxidation and storage. In both conditions, exercise did not abolish fructose conversion into glucose or its incorporation into VLDL triglycerides. This trial was registered at clinicaltrials.gov as NCT01866215.
Resumo:
The mouse has emerged as an animal model for many diseases. At IRO, we have used this animal to understand the development of many eye diseases and treatment of some of them. Precise evaluation of vision is a prerequisite for both these approaches. In this unit we describe three ways to measure vision: testing the optokinetic response, and evaluating the fundus by direct observation and by fluorescent angiography.
Resumo:
Peroxisome proliferator-activated receptors (PPARs) compose a family of nuclear receptors that mediate the effects of lipidic ligands at the transcriptional level. In this review, we highlight advances in the understanding of the PPAR ligand binding domain (LBD) structure at the atomic level. The overall structure of PPARs LBD is described, and important protein ligand interactions are presented. Structure-activity relationships between isotypes structures and ligand specificity are addressed. It is shown that the numerous experimental three-dimensional structures available, together with in silico simulations, help understanding the role played by the activating function-2 (AF-2) in PPARs activation and its underlying molecular mechanism. The relation between the PPARs constitutive activity and the intrinsic stability of the active conformation is discussed. Finally, the interactions of PPARs LBD with co-activators or co-repressors, as well as with the retinoid X receptor (RXR) are described and considered in relation to PPARs activation.
Resumo:
In rats, neonatal treatment with monosodium L-glutamate (MSG) induces several metabolic and neuroendocrine abnormalities, which result in hyperadiposity. No data exist, however, regarding neuroendocrine, immune and metabolic responses to acute endotoxemia in the MSG-damaged rat. We studied the consequences of MSG treatment during the acute phase response of inflammatory stress. Neonatal male rats were treated with MSG or vehicle (controls, CTR) and studied at age 90 days. Pituitary, adrenal, adipo-insular axis, immune, metabolic and gonadal functions were explored before and up to 5 h after single sub-lethal i.p. injection of bacterial lipopolysaccharide (LPS; 150 microg/kg). Our results showed that, during the acute phase response of inflammatory stress in MSG rats: (1) the corticotrope-adrenal, leptin, insulin and triglyceride responses were higher than in CTR rats, (2) pro-inflammatory (TNFalpha) cytokine response was impaired and anti-inflammatory (IL-10) cytokine response was normal, and (3) changes in peripheral estradiol and testosterone levels after LPS varied as in CTR rats. These data indicate that metabolic and neroendocrine-immune functions are altered in MSG-damaged rats. Our study also suggests that the enhanced corticotrope-corticoadrenal activity in MSG animals could be responsible, at least in part, for the immune and metabolic derangements characterizing hypothalamic obesity.
Resumo:
Purpose: Diabetic myocardium is particularly vulnerable to develop heart failure in response to chronic stress conditions including hypertension or myocardial infarction. We have recently observed that angiotensin II (Ang II)-mediated downregulation of the fatty acid oxidation pathway favors occurrence of heart failure by myocardial accumulation of lipids (lipotoxicity). Because diabetic heart is exposed to high levels of circulating fatty acid, we determined whether insulin resistance favors development of heart failure in mice with Ang II-mediated myocardial remodeling.Methods: To study the combined effect of diabetes and Ang II-induced heart remodeling, we generated leptin-deficient/insulin resistant (Lepob/ob) mice with cardiac targeted overexpression of angiotensinogen (TGAOGN). Left ventricular (LV) failure was indicated by pulmonary congestion (lung weight/tibial length>+2SD of wild-type mice). Myocardial metabolism and function were assessed during in vitro isolated working heart perfusion.Results: Forty-eight percent of TGAOGN mice without insulin resistance exhibited pulmonary congestion at the age of 6 months associated with increased myocardial BNP expression (+375% compared with WT) and reduced LV power (developed pressure x cardiac output; -15%). The proportion of mice presenting heart failure was markedly increased to 71% in TGAOGN mice with insulin resistance (TGAOGN/Lepob/ob). TGAOGN/Lepob/ob mice with heart failure exhibited further increase of BNP compared with failing non-diabetic TGAOGN mice (+146%) and further reduction of cardiac power (-59%). Mice with insulin resistance alone (Lepob/ob) did not exhibit signs of heart failure or LV dysfunction. Myocardial fatty acid oxidation measured during in vitro perfusion was markedly increased in non-failing hearts from Lepob/ob mice (+380% compared with WT) and glucose oxidation decreased (-72%). In contrast, fatty acid and glucose oxidation did not differ from Lepob/ob mice in hearts from TGAOGN/Lepob/ob mice without heart failure. However, both fatty acid and glucose oxidation were markedly decreased (-47% and -48%, respectively, compared with WT/Lepob/+) in failing hearts from TGAOGN/Lepob/ob mice. Reduction of fatty acid oxidation was associated with marked reduction of protein expression of a number of regulatory enzymes implied in fatty acid oxidation.Conclusions: Insulin resistance favors the progression to heart failure during chronic exposure of the myocardium to Ang II. Our results are compatible with a role of Ang II-mediated downregulation of fatty acid oxidation, potentially promoting lipotoxicity.
Resumo:
Only few cases of classical phenylketonuria (PKU) in premature infants have been reported. Treatment of these patients is challenging due to the lack of a phenylalanine-free amino acid solution for parenteral infusion. The boy was born at 27 weeks of gestation with a weight of 1000 g (P10). He received parenteral nutrition with a protein intake of 3 g/kg/day. On day 7 he was diagnosed with classical PKU (genotype IVS10-11G>A/IVS12+ 1G>A) due to highly elevated phenylalanine (Phe) level in newborn screening (2800 micromol/L). His maximum plasma Phe level reached 3696 micromol/L. Phe intake was stopped for 4 days. During this time the boy received intravenous glucose and lipids as well as little amounts of Phe-free formula by a nasogastric tube. Due to a deficit of essential amino acids and insufficient growth, a parenteral nutrition rich in branched-chain amino-acids and relatively poor in Phe was added, in order to promote protein synthesis without overloading in Phe. Under this regimen, Phe plasma levels normalized on day 19 when intake of natural protein was started. The boy has now a corrected age of 2 years. He shows normal growth parameters and psychomotor development. Despite a long period of highly elevated Phe levels in the postnatal period our patient shows good psychomotor development. The management of premature infants with PKU depends on the child's tolerance to enteral nutrition. It demands an intensive follow-up by an experienced team and dedicated dietician. Appropriate Phe-free parenteral nutrition would be necessary especially in case of gastro-intestinal complications of prematurity.
Resumo:
Continuous respiratory exchange measurements were performed on 10 healthy young women for 1 h before, 3 h during, and 3 h after either parenteral (iv) or intragastric (ig) administration of a nutrient mixture (52% glucose, 18% amino acid, and 30% lipid energy) infused at twice the postabsorptive resting energy expenditure (REE). REE rose from 0.98 +/- 0.02 (iv) and 0.99 +/- 0.02 kcal/min (ig) postabsorptively to 1.13 +/- 0.03 (iv) and 1.13 +/- 0.02 kcal/min (ig), resulting in nutrient-induced thermogenesis of 10 +/- 0.6 and 9.3 +/- 0.9%, respectively, when related to the metabolizable energy. The respiratory quotient rose from preinfusion values of 0.81 +/- 0.02 (iv) and 0.80 +/- 0.01 (ig) to 0.86 +/- 0.01 (iv) and 0.85 +/- 0.01 (ig). After nutrient administration the respiratory quotient fell significantly to below the preinfusion values. Plasma glucose and insulin concentrations rose during nutrient administration but were higher during the intravenous route. It is concluded that, although the response time to intragastric administration was delayed, the thermic effects and overall substrate oxidations were comparable during intravenous or intragastric administration, albeit, at lower plasma glucose and insulin concentrations via the intragastric route.
Resumo:
Nonstructural protein 4B (NS4B) plays an essential role in the formation of the hepatitis C virus (HCV) replication complex. It is a relatively poorly characterized integral membrane protein predicted to comprise four transmembrane segments in its central portion. Here, we describe a novel determinant for membrane association represented by amino acids (aa) 40 to 69 in the N-terminal portion of NS4B. This segment was sufficient to target and tightly anchor the green fluorescent protein to cellular membranes, as assessed by fluorescence microscopy as well as membrane extraction and flotation analyses. Circular dichroism and nuclear magnetic resonance structural analyses showed that this segment comprises an amphipathic alpha-helix extending from aa 42 to 66. Attenuated total reflection infrared spectroscopy and glycosylation acceptor site tagging revealed that this amphipathic alpha-helix has the potential to traverse the phospholipid bilayer as a transmembrane segment, likely upon oligomerization. Alanine substitution of the fully conserved aromatic residues on the hydrophobic helix side abrogated membrane association of the segment comprising aa 40 to 69 and disrupted the formation of a functional replication complex. These results provide the first atomic resolution structure of an essential membrane-associated determinant of HCV NS4B.
Resumo:
To directly assess the binding of exogenous peptides to cell surface-associated MHC class I molecules at the single cell level, we examined the possibility of combining the use of biotinylated peptide derivatives with an immunofluorescence detection system based on flow cytometry. Various biotinylated derivatives of the adenovirus 5 early region 1A peptide 234-243, an antigenic peptide recognized by CTL in the context of H-2Db, were first screened in functional assays for their ability to bind efficiently to Db molecules on living cells. Suitable peptide derivatives were then tested for their ability to generate positive fluorescence signals upon addition of phycoerythrin-labeled streptavidin to peptide derivative-bearing cells. Strong fluorescent staining of Db-expressing cells was achieved after incubation with a peptide derivative containing a biotin group at the C-terminus. Competition experiments using the unmodified parental peptide as well as unrelated peptides known to bind to Kd, Kb, or Db, respectively, established that binding of the biotinylated peptide to living cells was Db-specific. By using Con A blasts derived from different H-2 congenic mouse strains, it could be shown that the biotinylated peptide bound only to Db among > 20 class I alleles tested. Moreover, binding of the biotinylated peptide to cells expressing the Dbm13 and Dbm14 mutant molecules was drastically reduced compared to Db. Binding of the biotinylated peptide to freshly isolated Db+ cells was readily detectable, allowing direct assessment of the relative amount of peptide bound to distinct lymphocyte subpopulations by three-color flow cytometry. While minor differences between peripheral T and B cells could be documented, thymocytes were found to differ widely in their peptide binding activity. In all cases, these differences correlated positively with the differential expression of Db at the cell surface. Finally, kinetic studies at different temperatures strongly suggested that the biotinylated peptide first associated with Db molecules available constitutively at the cell surface and then with newly arrived Db molecules.
Resumo:
The liver secretes triglyceride-rich VLDLs, and the triglycerides in these particles are taken up by peripheral tissues, mainly heart, skeletal muscle, and adipose tissue. Blocking hepatic VLDL secretion interferes with the delivery of liver-derived triglycerides to peripheral tissues and results in an accumulation of triglycerides in the liver. However, it is unclear how interfering with hepatic triglyceride secretion affects adiposity, muscle triglyceride stores, and insulin sensitivity. To explore these issues, we examined mice that cannot secrete VLDL [due to the absence of microsomal triglyceride transfer protein (Mttp) in the liver]. These mice exhibit markedly reduced levels of apolipoprotein B-100 in the plasma, along with reduced levels of triglycerides in the plasma. Despite the low plasma triglyceride levels, triglyceride levels in skeletal muscle were unaffected. Adiposity and adipose tissue triglyceride synthesis rates were also normal, and body weight curves were unaffected. Even though the blockade of VLDL secretion caused hepatic steatosis accompanied by increased ceramides and diacylglycerols in the liver, the mice exhibited normal glucose tolerance and were sensitive to insulin at the whole-body level, as judged by hyperinsulinemic euglycemic clamp studies. Normal hepatic glucose production and insulin signaling were also maintained in the fatty liver induced by Mttp deletion. Thus, blocking VLDL secretion causes hepatic steatosis without insulin resistance, and there is little effect on muscle triglyceride stores or adiposity
Resumo:
OBJECTIVE: Lipids stored in adipose tissue can originate from dietary lipids or from de novo lipogenesis (DNL) from carbohydrates. Whether DNL is abnormal in adipose tissue of overweight individuals remains unknown. The present study was undertaken to assess the effect of carbohydrate overfeeding on glucose-induced whole body DNL and adipose tissue lipogenic gene expression in lean and overweight humans. DESIGN: Prospective, cross-over study. SUBJECTS AND METHODS: A total of 11 lean (five male, six female, mean BMI 21.0+/-0.5 kg/m(2)) and eight overweight (four males, four females, mean BMI 30.1+/-0.6 kg/m(2)) volunteers were studied on two occasions. On one occasion, they received an isoenergetic diet containing 50% carbohydrate for 4 days prior to testing; on the other, they received a hyperenergetic diet (175% energy requirements) containing 71% carbohydrates. After each period of 4 days of controlled diet, they were studied over 6 h after having received 3.25 g glucose/kg fat free mass. Whole body glucose oxidation and net DNL were monitored by means of indirect calorimetry. An adipose tissue biopsy was obtained at the end of this 6-h period and the levels of SREBP-1c, acetyl CoA carboxylase, and fatty acid synthase mRNA were measured by real-time PCR. RESULTS: After isocaloric feeding, whole body net DNL amounted to 35+/-9 mg/kg fat free mass/5 h in lean subjects and to 49+/-3 mg/kg fat free mass/5 h in overweight subjects over the 5 h following glucose ingestion. These figures increased (P<0.001) to 156+/-21 mg/kg fat free mass/5 h in lean and 64+/-11 mg/kg fat free mass/5 h (P<0.05 vs lean) in overweight subjects after carbohydrate overfeeding. Whole body DNL after overfeeding was lower (P<0.001) and glycogen synthesis was higher (P<0.001) in overweight than in normal subjects. Adipose tissue SREBP-1c mRNA increased by 25% in overweight and by 43% in lean subjects (P<0.05) after carbohydrate overfeeding, whereas fatty acid synthase mRNA increased by 66 and 84% (P<0.05). CONCLUSION: Whole body net DNL is not increased during carbohydrate overfeeding in overweight individuals. Stimulation of adipose lipogenic enzymes is also not higher in overweight subjects. Carbohydrate overfeeding does not stimulate whole body net DNL nor expression of lipogenic enzymes in adipose tissue to a larger extent in overweight than lean subjects.
Resumo:
Land plants have developed a cuticle preventing uncontrolled water loss. Here we report that an ATP-binding cassette (ABC) subfamily G (ABCG) full transporter is required for leaf water conservation in both wild barley and rice. A spontaneous mutation, eibi1.b, in wild barley has a low capacity to retain leaf water, a phenotype associated with reduced cutin deposition and a thin cuticle. Map-based cloning revealed that Eibi1 encodes an HvABCG31 full transporter. The gene was highly expressed in the elongation zone of a growing leaf (the site of cutin synthesis), and its gene product also was localized in developing, but not in mature tissue. A de novo wild barley mutant named "eibi1.c," along with two transposon insertion lines of rice mutated in the ortholog of HvABCG31 also were unable to restrict water loss from detached leaves. HvABCG31 is hypothesized to function as a transporter involved in cutin formation. Homologs of HvABCG31 were found in green algae, moss, and lycopods, indicating that this full transporter is highly conserved in the evolution of land plants.
Resumo:
The recent identification and molecular characterization of tumor-associated antigens recognized by tumor-reactive CD8+ T lymphocytes has led to the development of antigen-specific immunotherapy of cancer. Among other approaches, clinical studies have been initiated to assess the in vivo immunogenicity of tumor antigen-derived peptides in cancer patients. In this study, we have analyzed the CD8+ T cell response of an ocular melanoma patient to a vaccine composed of four different tumor antigen-derived peptides administered simultaneously in incomplete Freund's adjuvant (IFA). Peptide NY-ESO-1(157-165) was remarkably immunogenic and induced a CD8+ T cell response detectable ex vivo at an early time point of the vaccination protocol. A CD8+ T cell response to the peptide analog Melan-A(26-35 A27L) was also detectable ex vivo at a later time point, whereas CD8+ T cells specific for peptide tyrosinase(368-376) were detected only after in vitro peptide stimulation. No detectable CD8+ T cell response to peptide gp100(457-466) was observed. Vaccine-induced CD8+ T cell responses declined rapidly after the initial response but increased again after further peptide injections. In addition, tumor antigen-specific CD8+ T cells were isolated from a vaccine injection site biopsy sample. Importantly, vaccine-induced CD8+ T cells specifically lysed tumor cells expressing the corresponding antigen. Together, these data demonstrate that simultaneous immunization with multiple tumor antigen-derived peptides can result in the elicitation of multiepitope-directed CD8+ T cell responses that are reactive against antigen-expressing tumors and able to infiltrate antigen-containing peripheral sites.
Resumo:
A novel approach to measure carbon dioxide (CO2) in gaseous samples, based on a precise and accurate quantification by (13)CO2 internal standard generated in situ is presented. The main goal of this study was to provide an innovative headspace-gas chromatography-mass spectrometry (HS-GC-MS) method applicable in the routine determination of CO2. The main drawback of the GC methods discussed in the literature for CO2 measurement is the lack of a specific internal standard necessary to perform quantification. CO2 measurement is still quantified by external calibration without taking into account analytical problems which can often occur considering gaseous samples. To avoid the manipulation of a stable isotope-labeled gas, we have chosen to generate in situ an internal labeled standard gas ((13)CO2) on the basis of the stoichiometric formation of CO2 by the reaction of hydrochloric acid (HCl) with sodium hydrogen carbonate (NaH(13)CO3). This method allows a precise measurement of CO2 concentration and was validated on various human postmortem gas samples in order to study its efficiency.
Resumo:
OBJECTIVE: The prevalence of adolescent obesity has increased considerably over the past decade in Switzerland and has become a serious public health problem in Europe. Prevention of obesity using various comprehensive programmes appears to be very promising, although we must admit that several interventions had generally disappointing results compared with the objectives and target initially fixed. Holistic programmes including nutritional education combined with promotion of physical activity and behaviour modification constitute the key factors in the prevention of childhood and adolescent obesity. The purpose of this programme was to incorporate nutrition/physical education as well as psychological aspects in selected secondary schools (9th grade, 14-17 years). METHODS: The educational strategy was based on the development of a series of 13 practical workshops covering wide areas such as physical inactivity, body composition, sugar, energy density, invisible lipids, how to read food labels, is meal duration important? Do you eat with pleasure or not? Do you eat because you are hungry? Emotional eating. For teachers continuing education, a basic highly illustrated guide was developed as a companion booklet to the workshops. These materials were first validated by biology, physical education, dietician and psychologist teachers as well as school medical officers. RESULTS: Teachers considered the practical educational materials innovative and useful, motivational and easy to understand. Up to now (early 2008), the programme has been implemented in 50 classes or more from schools originating from three areas in the French part of Switzerland. Based on the 1-week pedometer value assessed before and after the 1 school-year programme, an initial evaluation indicated that overall physical placidity was significantly decreased as evidenced by a significant rise in the number of steps per day. CONCLUSION: Future evaluation will provide more information on the effectiveness of the ADOS programme.