46 resultados para synchronization
Resumo:
Introduction: To investigate differences in twitch and M-wave potentiation in the quadriceps femoris when electrical stimulation is applied over the quadriceps muscle belly versus the femoral nerve trunk. Methods: M-waves and mechanical twitches were evoked using direct quadriceps muscle and femoral nerve stimulation between 48 successive isometric maximal voluntary contractions (MVC) from 10 young, healthy subjects. Potentiation was investigated by analyzing the changes in M-wave amplitude recorded from the vastus medialis (VM) and vastus lateralis (VL) muscles and in quadriceps peak twitch force. Results: Potentiation of twitch, VM M-wave, and VL M-wave were greater for femoral nerve than for direct quadriceps stimulation (P<0.05). Despite a 50% decrease in MVC force, the amplitude of the M-waves increased significantly during exercise. Conclusions: In addition to enhanced electrogenic Na(+) -K(+) pumping, other factors (such as synchronization in activation of muscle fibers and muscle architectural properties) might significantly influence the magnitude of M-wave enlargement. © 2013 Wiley Periodicals, Inc.
Resumo:
Recent studies have indicated that gamma band oscillations participate in the temporal binding needed for the synchronization of cortical networks involved in short-term memory and attentional processes. To date, no study has explored the temporal dynamics of gamma band in the early stages of dementia. At baseline, gamma band analysis was performed in 29 cases with mild cognitive impairment (MCI) during the n-back task. Based on phase diagrams, multiple linear regression models were built to explore the relationship between the cognitive status and gamma oscillation changes over time. Individual measures of phase diagram complexity were made using fractal dimension values. After 1 year, all cases were assessed neuropsychologically using the same battery. A total of 16 MCI patients showed progressive cognitive decline (PMCI) and 13 remained stable (SMCI). When adjusted for gamma values at lag -2, and -3 ms, PMCI cases displayed significantly lower average changes in gamma values than SMCI cases both in detection and 2-back tasks. Gamma fractal dimension of PMCI cases displayed significantly higher gamma fractal dimension values compared to SMCI cases. This variable explained 11.8% of the cognitive variability in this series. Our data indicate that the progression of cognitive decline in MCI is associated with early deficits in temporal binding that occur during the activation of selective attention processes.
Resumo:
The interhemispheric asymmetries that originate from connectivity-related structuring of the cortex are compromised in schizophrenia (SZ). Under the assumption that such abnormalities affect functional connectivity, we analyzed its correlate-EEG synchronization-in SZ patients and matched controls. We applied multivariate synchronization measures based on Laplacian EEG and tuned to various spatial scales. Compared to the controls who had rightward asymmetry at a local level (EEG power), rightward anterior and leftward posterior asymmetries at an intraregional level (1st and 2nd order S-estimator), and rightward global asymmetry (hemispheric S-estimator), SZ patients showed generally attenuated asymmetry, the effect being strongest for intraregional synchronization in the alpha and beta bands. The abnormalities of asymmetry increased with the duration of the disease and correlated with the negative symptoms. We discuss the tentative links between these findings and gross anatomical asymmetries, including the cerebral torque and gyrification pattern, in normal subjects and SZ patients.
Resumo:
Alpha-band activity (8-13 Hz) is not only suppressed by sensory stimulation and movements, but also modulated by attention, working memory and mental tasks, and could be sensitive to higher motor control functions. The aim of the present study was to examine alpha oscillatory activity during the preparation of simple left or right finger movements, contrasting the external and internal mode of action selection. Three preparation conditions were examined using a precueing paradigm with S1 as the preparatory and S2 as the imperative cue: Full, laterality instructed by S1; Free, laterality freely selected and None, laterality instructed by S2. Time-frequency (TF) analysis was performed in the alpha frequency range during the S1-S2 interval, and alpha motor-related amplitude asymmetries (MRAA) were also calculated. The significant MRAA during the Full and Free conditions indicated effective external and internal motor response preparation. In the absence of specific motor preparation (None), a posterior alpha event-related desynchronization (ERD) dominated, reflecting the main engagement of attentional resources. In Full and Free motor preparation, posterior alpha ERD was accompanied by a midparietal alpha event-related synchronization (ERS), suggesting a concomitant inhibition of task-irrelevant visual activity. In both Full and Free motor preparation, analysis of alpha power according to MRAA amplitude revealed two types of functional activation patterns: (1) a motor alpha pattern, with predominantly midparietal alpha ERS and large MRAA corresponding to lateralized motor activation/visual inhibition and (2) an attentional alpha pattern, with dominating right posterior alpha ERD and small MRAA reflecting visuospatial attention. The present results suggest that alpha oscillatory patterns do not resolve the selection mode of action, but rather distinguish separate functional strategies of motor preparation.
Resumo:
Recently graph theory and complex networks have been widely used as a mean to model functionality of the brain. Among different neuroimaging techniques available for constructing the brain functional networks, electroencephalography (EEG) with its high temporal resolution is a useful instrument of the analysis of functional interdependencies between different brain regions. Alzheimer's disease (AD) is a neurodegenerative disease, which leads to substantial cognitive decline, and eventually, dementia in aged people. To achieve a deeper insight into the behavior of functional cerebral networks in AD, here we study their synchronizability in 17 newly diagnosed AD patients compared to 17 healthy control subjects at no-task, eyes-closed condition. The cross-correlation of artifact-free EEGs was used to construct brain functional networks. The extracted networks were then tested for their synchronization properties by calculating the eigenratio of the Laplacian matrix of the connection graph, i.e., the largest eigenvalue divided by the second smallest one. In AD patients, we found an increase in the eigenratio, i.e., a decrease in the synchronizability of brain networks across delta, alpha, beta, and gamma EEG frequencies within the wide range of network costs. The finding indicates the destruction of functional brain networks in early AD.
Resumo:
Background: Earlier contributions have documented significant changes in sensory, attention-related endogenous event-related potential (ERP) components and θ band oscillatory responses during working memory activation in patients with schizophrenia. In patients with first-episode psychosis, such studies are still scarce and mostly focused on auditory sensory processing. The present study aimed to explore whether subtle deficits of cortical activation are present in these patients before the decline of working memory performance. Methods: We assessed exogenous and endogenous ERPs and frontal θ event-related synchronization (ERS) in patients with first-episode psychosis and healthy controls who successfully performed an adapted 2-back working memory task, including 2 visual n-backworking memory tasks as well as oddball detection and passive fixation tasks. Results: We included 15 patients with first-episode psychosis and 18 controls in this study. Compared with controls, patients with first-episode psychosis displayed increased latencies of early visual ERPs and phasic θ ERS culmination peak in all conditions. However, they also showed a rapid recruitment of working memory-related neural generators, even in pure attention tasks, as indicated by the decreased N200 latency and increased amplitude of sustained θ ERS in detection compared with controls. Limitations: Owing to the limited sample size, no distinction was made between patients with first-episode psychosis with positive and negative symptoms. Although we controlled for the global load of neuroleptics, medication effect cannot be totally ruled out. Conclusion: The present findings support the concept of a blunted electroencephalographic response in patients with first-episode psychosis who recruit the maximum neural generators in simple attention conditions without being able to modulate their brain activation with increased complexity of working memory tasks.
Resumo:
Résumé: Les récents progrès techniques de l'imagerie cérébrale non invasives ont permis d'améliorer la compréhension des différents systèmes fonctionnels cérébraux. Les approches multimodales sont devenues indispensables en recherche, afin d'étudier dans sa globalité les différentes caractéristiques de l'activité neuronale qui sont à la base du fonctionnement cérébral. Dans cette étude combinée d'imagerie par résonance magnétique fonctionnelle (IRMf) et d'électroencéphalographie (EEG), nous avons exploité le potentiel de chacune d'elles, soit respectivement la résolution spatiale et temporelle élevée. Les processus cognitifs, de perception et de mouvement nécessitent le recrutement d'ensembles neuronaux. Dans la première partie de cette thèse nous étudions, grâce à la combinaison des techniques IRMf et EEG, la réponse des aires visuelles lors d'une stimulation qui demande le regroupement d'éléments cohérents appartenant aux deux hémi-champs visuels pour en faire une seule image. Nous utilisons une mesure de synchronisation (EEG de cohérence) comme quantification de l'intégration spatiale inter-hémisphérique et la réponse BOLD (Blood Oxygenation Level Dependent) pour évaluer l'activité cérébrale qui en résulte. L'augmentation de la cohérence de l'EEG dans la bande beta-gamma mesurée au niveau des électrodes occipitales et sa corrélation linéaire avec la réponse BOLD dans les aires de VP/V4, reflète et visualise un ensemble neuronal synchronisé qui est vraisemblablement impliqué dans le regroupement spatial visuel. Ces résultats nous ont permis d'étendre la recherche à l'étude de l'impact que le contenu en fréquence des stimuli a sur la synchronisation. Avec la même approche, nous avons donc identifié les réseaux qui montrent une sensibilité différente à l'intégration des caractéristiques globales ou détaillées des images. En particulier, les données montrent que l'implication des réseaux visuels ventral et dorsal est modulée par le contenu en fréquence des stimuli. Dans la deuxième partie nous avons a testé l'hypothèse que l'augmentation de l'activité cérébrale pendant le processus de regroupement inter-hémisphérique dépend de l'activité des axones calleux qui relient les aires visuelles. Comme le Corps Calleux présente une maturation progressive pendant les deux premières décennies, nous avons analysé le développement de la fonction d'intégration spatiale chez des enfants âgés de 7 à 13 ans et le rôle de la myelinisation des fibres calleuses dans la maturation de l'activité visuelle. Nous avons combiné l'IRMf et la technique de MTI (Magnetization Transfer Imaging) afin de suivre les signes de maturation cérébrale respectivement sous l'aspect fonctionnel et morphologique (myelinisation). Chez lés enfants, les activations associées au processus d'intégration entre les hémi-champs visuels sont, comme chez l'adulte, localisées dans le réseau ventral mais se limitent à une zone plus restreinte. La forte corrélation que le signal BOLD montre avec la myelinisation des fibres du splenium est le signe de la dépendance entre la maturation des fonctions visuelles de haut niveau et celle des connections cortico-corticales. Abstract: Recent advances in non-invasive brain imaging allow the visualization of the different aspects of complex brain dynamics. The approaches based on a combination of imaging techniques facilitate the investigation and the link of multiple aspects of information processing. They are getting a leading tool for understanding the neural basis of various brain functions. Perception, motion, and cognition involve the formation of cooperative neuronal assemblies distributed over the cerebral cortex. In this research, we explore the characteristics of interhemispheric assemblies in the visual brain by taking advantage of the complementary characteristics provided by EEG (electroencephalography) and fMRI (Functional Magnetic Resonance Imaging) techniques. These are the high temporal resolution for EEG and high spatial resolution for fMRI. In the first part of this thesis we investigate the response of the visual areas to the interhemispheric perceptual grouping task. We use EEG coherence as a measure of synchronization and BOLD (Blood Oxygenar tion Level Dependent) response as a measure of the related brain activation. The increase of the interhemispheric EEG coherence restricted to the occipital electrodes and to the EEG beta band and its linear relation to the BOLD responses in VP/V4 area points to a trans-hemispheric synchronous neuronal assembly involved in early perceptual grouping. This result encouraged us to explore the formation of synchronous trans-hemispheric networks induced by the stimuli of various spatial frequencies with this multimodal approach. We have found the involvement of ventral and medio-dorsal visual networks modulated by the spatial frequency content of the stimulus. Thus, based on the combination of EEG coherence and fMRI BOLD data, we have identified visual networks with different sensitivity to integrating low vs. high spatial frequencies. In the second part of this work we test the hypothesis that the increase of brain activity during perceptual grouping depends on the activity of callosal axons interconnecting the visual areas that are involved. To this end, in children of 7-13 years, we investigated functional (functional activation with fMRI) and morphological (myelination of the corpus callosum with Magnetization Transfer Imaging (MTI)) aspects of spatial integration. In children, the activation associated with the spatial integration across visual fields was localized in visual ventral stream and limited to a part of the area activated in adults. The strong correlation between individual BOLD responses in .this area and the myelination of the splenial system of fibers points to myelination as a significant factor in the development of the spatial integration ability.
Resumo:
Over the past few years, technological breakthroughs have helpedcompetitive sports to attain new levels. Training techniques, athletes' management and methods to analyse specific technique and performancehave sharpened, leading to performance improvement. Alpine skiing is not different. The objective of the present work was to study the technique of highy skilled alpine skiers performing giant slalom, in order to determine the quantity of energy that can be produced by skiers to increase their speed. To reach this goal, several tools have been developed to allow field testing on ski slopes; a multi cameras system, a wireless synchronization system, an aerodynamic drag model and force plateforms have especially been designed and built. The analyses performed using the different tools highlighted the possibility for several athletes to increase their energy by approximately 1.5 % using muscular work. Nevertheless, the athletes were in average not able to use their muscular work in an efficient way. By offering functional tools such as drift analysis using combined data from GPS and inertial sensors, or trajectory analysis based on tracking morphological points, this research makes possible the analysis of alpine skiers technique and performance in real training conditions. The author wishes for this work to be used as a basis for continued knowledge and understanding of alpine skiing technique. - Le sport de compétition bénéficie depuis quelques années des progrès technologiques apportés par la science. Les techniques d'entraînement, le suivi des athlètes et les méthodes d'analyse deviennent plus pointus, induisant une nette amélioration des performances. Le ski alpin ne dérogeant pas à cette règle, l'objectif de ce travail était d'analyser la technique de skieurs de haut niveau en slalom géant afin de déterminer la quantité d'énergie fournie par les skieurs pour augmenter leur vitesse. Pour ce faire, il a été nécessaire de developer différents outils d'analyse adaptés aux contraintes inhérentes aux tests sur les pistes de skis; un système multi caméras, un système de synchronisation, un modèle aérodynamique et des plateformes de force ont notamment été développés. Les analyses effectuées grâce à ces différents outils ont montré qu'il était possible pour certains skieur d'augmenter leur énergie d'environ 1.5 % grâce au travail musculaire. Cependant, les athlètes n'ont en moyenne pas réussi à utiliser leur travail musculaire de manière efficace. Ce projet a également rendu possible des analyses adaptées aux conditions d'entraînement des skieurs en proposant des outils fonctionnels tels que l'analyse du drift grâce à des capteurs inertiels et GPS, ainsi que l'analyse simplifiée de trajectoires grâce au suivi de points morphologiques. L'auteur espère que ce travail servira de base pour approfondir les connaissances de la technique en ski alpin.
Resumo:
The splenium of the corpus callosum connects the posterior cortices with fibers varying in size from thin late-myelinating axons in the anterior part, predominantly connecting parietal and temporal areas, to thick early-myelinating fibers in the posterior part, linking primary and secondary visual areas. In the adult human brain, the function of the splenium in a given area is defined by the specialization of the area and implemented via excitation and/or suppression of the contralateral homotopic and heterotopic areas at the same or different level of visual hierarchy. These mechanisms are facilitated by interhemispheric synchronization of oscillatory activity, also supported by the splenium. In postnatal ontogenesis, structural MRI reveals a protracted formation of the splenium during the first two decades of human life. In doing so, the slow myelination of the splenium correlates with the formation of interhemispheric excitatory influences in the extrastriate areas and the EEG synchronization, while the gradual increase of inhibitory effects in the striate cortex is linked to the local inhibitory circuitry. Reshaping interactions between interhemispherically distributed networks under various perceptual contexts allows sparsification of responses to superfluous information from the visual environment, leading to a reduction of metabolic and structural redundancy in a child's brain.
Resumo:
Previous functional imaging studies have pointed to the compensatory recruitment of cortical circuits in old age in order to counterbalance the loss of neural efficiency and preserve cognitive performance. Recent electroencephalographic (EEG) analyses reported age-related deficits in the amplitude of an early positive-negative working memory (PN(wm)) component as well as changes in working memory (WM)-load related brain oscillations during the successful performance of the n-back task. To explore the age-related differences of EEG activation in the face of increasing WM demands, we assessed the PN(wm) component area, parietal alpha event-related synchronization (ERS) as well as frontal theta ERS in 32 young and 32 elderly healthy individuals who successfully performed a highly WM demanding 3-back task. PN(wm) area increased with higher memory loads (3- and 2-back > 0-back tasks) in younger subjects. Older subjects reached the maximal values for this EEG parameter during the less WM demanding 0-back task. They showed a rapid development of an alpha ERS that reached its maximal amplitude at around 800 ms after stimulus onset. In younger subjects, the late alpha ERS occurred between 1,200 and 2,000 ms and its amplitude was significantly higher compared with elders. Frontal theta ERS culmination peak decreased in a task-independent manner in older compared with younger cases. Only in younger individuals, there was a significant decrease in the phasic frontal theta ERS amplitude in the 2- and 3-back tasks compared with the detection and 0-back tasks. These observations suggest that older adults display a rapid mobilization of their neural generators within the parietal cortex to manage very low demanding WM tasks. Moreover, they are less able to activate frontal theta generators during attentional tasks compared with younger persons.
Resumo:
Introduction This dissertation consists of three essays in equilibrium asset pricing. The first chapter studies the asset pricing implications of a general equilibrium model in which real investment is reversible at a cost. Firms face higher costs in contracting than in expanding their capital stock and decide to invest when their productive capital is scarce relative to the overall capital of the economy. Positive shocks to the capital of the firm increase the size of the firm and reduce the value of growth options. As a result, the firm is burdened with more unproductive capital and its value lowers with respect to the accumulated capital. The optimal consumption policy alters the optimal allocation of resources and affects firm's value, generating mean-reverting dynamics for the M/B ratios. The model (1) captures convergence of price-to-book ratios -negative for growth stocks and positive for value stocks - (firm migration), (2) generates deviations from the classic CAPM in line with the cross-sectional variation in expected stock returns and (3) generates a non-monotone relationship between Tobin's q and conditional volatility consistent with the empirical evidence. The second chapter proposes a standard portfolio-choice problem with transaction costs and mean reversion in expected returns. In the presence of transactions costs, no matter how small, arbitrage activity does not necessarily render equal all riskless rates of return. When two such rates follow stochastic processes, it is not optimal immediately to arbitrage out any discrepancy that arises between them. The reason is that immediate arbitrage would induce a definite expenditure of transactions costs whereas, without arbitrage intervention, there exists some, perhaps sufficient, probability that these two interest rates will come back together without any costs having been incurred. Hence, one can surmise that at equilibrium the financial market will permit the coexistence of two riskless rates that are not equal to each other. For analogous reasons, randomly fluctuating expected rates of return on risky assets will be allowed to differ even after correction for risk, leading to important violations of the Capital Asset Pricing Model. The combination of randomness in expected rates of return and proportional transactions costs is a serious blow to existing frictionless pricing models. Finally, in the last chapter I propose a two-countries two-goods general equilibrium economy with uncertainty about the fundamentals' growth rates to study the joint behavior of equity volatilities and correlation at the business cycle frequency. I assume that dividend growth rates jump from one state to other, while countries' switches are possibly correlated. The model is solved in closed-form and the analytical expressions for stock prices are reported. When calibrated to the empirical data of United States and United Kingdom, the results show that, given the existing degree of synchronization across these business cycles, the model captures quite well the historical patterns of stock return volatilities. Moreover, I can explain the time behavior of the correlation, but exclusively under the assumption of a global business cycle.
Resumo:
Amnestic mild cognitive impairment (aMCI) is characterized by memory deficits alone (single-domain, sd-aMCI) or associated with other cognitive disabilities (multi-domain, md-aMCI). The present study assessed the patterns of electroencephalographic (EEG) activity during the encoding and retrieval phases of short-term memory in these two aMCI subtypes, to identify potential functional differences according to the neuropsychological profile. Continuous EEG was recorded in 43 aMCI patients, whose 16 sd-aMCI and 27 md-aMCI, and 36 age-matched controls (EC) during delayed match-to-sample tasks for face and letter stimuli. At encoding, attended stimuli elicited parietal alpha (8-12 Hz) power decrease (desynchronization), whereas distracting stimuli were associated with alpha power increase (synchronization) over right central sites. No difference was observed in parietal alpha desynchronization among the three groups. For attended faces, the alpha synchronization underlying suppression of distracting letters was reduced in both aMCI subgroups, but more severely in md-aMCI cases that differed significantly from EC. At retrieval, the early N250r recognition effect was significantly reduced for faces in md-aMCI as compared to both sd-aMCI and EC. The results suggest a differential alteration of working memory cerebral processes for faces in the two aMCI subtypes, face covert recognition processes being specifically altered in md-aMCI.
Resumo:
Résumé La iododeoxyuridine (IdUrd), une fois marqué au 123I ou au 125I, est un agent potentiel pour des thérapies par rayonnements Auger. Cependant, des limitations restreignent son incorporation dans l'ADN. Afin d'augmenter celle-ci, différents groupes ont étudié la fluorodeoxyuridine (FdUrd), qui favorise l'incorporation d'analogue de la thymidine, sans toutefois parvenir à une toxicité associé plus importante. Dans notre approche, 3 lignées cellulaires de glioblastomes humains et une lignée de cancer ovarien ont été utilisées. Nous avons observé, 16 à 24 h après un court pré-traitement à la FdUrd, un fort pourcentage de cellules s'accumulant en phase S. Plus qu'une accumulation, c'était une synchronisation des cellules, celles-ci restant capables d'incorporer la radio-IdIrd et repartant dans le cycle cellulaire. De plus, ces cellules accumulées après un pré-traitement à la FdUrd étaient plus radio-sensibles. Après le même intervalle de 16 à 24 h suivant la FdUrd, les 4 lignées cellulaires ont incorporé des taux plus élevés de radio-IdUrd que sans ce prétraitement. Une corrélation temporelle entre l'accumulation des cellules en phase S et la forte incorporation de radio-IdUrd a ainsi été révélée 16 à 24 h après pré-traitement à la FdUrd. Les expériences de traitement par rayonnements Auger sur les cellules accumulées en phase S ont montré une augmentation significative de l'efficacité thérapeutique de 125I-IdUrd comparé aux cellules non prétraitées à la FdUrd. Une première estimation a permis de déterminer que 100 désintégrations de 125I par cellules étant nécessaires afin d'atteindre l'efficacité thérapeutique. De plus, p53 semble jouer un rôle dans l'induction directe de mort cellulaire après des traitements par rayonnements Auger, comme indiqué par les mesures par FACS d'apoptose et de nécrose 24 et 48 h après le traitement. Concernant les expériences in vivo, nous avons observé une incorporation marquée de la radio-IdUrd dans l'ADN après un pré-traitement à la FdUrd dans un model de carcinomatose ovarienne péritonéale. Une augmentation encore plus importante a été observée après injection intra-tumorale dans des transplants sous-cutanés de glioblastomes sur des souris nues. Ces modèles pourraient être utilisés pour de plus amples études de diffusion de radio-IdUrd et de thérapie par rayonnement Auger. En conclusion, ce travail montre une première application réussie de la FdUrd afin d'accroître l'efficacité de la radio-IdUrd par traitements aux rayonnements Auger. La synchronisation des cellules en phase S combinée avec la forte incorporation de radio-IdUrd dans l'ADN différées après un pré-traitement à la FdUrd ont montré le gain thérapeutique attendu in vitro. De plus, des études in vivo sont tout indiquées après les observations encourageantes d'incorporation de radio-IdUrd dans les models de transplants sous-cutanés de glioblastomes et de tumeurs péritonéales ovariennes. Summary Iododeoxyuridine (IdUrd), labelled with 123I or 125I, could be a potential Auger radiation therapy agent. However, limitations restrict its DNA incorporation in proliferating cells. Therefore, fluorodeoxyuridine (FdUrd), which favours incorporation of thymidine analogues, has been studied by different groups in order to increase radio-IdUrd DNA incorporation, however therapeutic efficacy increase could not be reached. In our approach, 3 human glioblastoma cell lines with different p53 expression and one ovarian cancer line were pre-treated with various FdUrd conditions. We observed a high percentage of cells accumulating in early S phase 16 to 24 h after a short and non-toxic FdUrd pre-treatment. More than an accumulation, this was a synchronization, cells remaining able to incorporate radio-IdUrd and re-entering the cell cycle. Furthermore, the S phase accumulated cells post FdUrd pre-treatment were more radiosensitive. After the same delay of 16 to 24 h post FdUrd pre-treatment, the 4 cell lines were incorporating higher rates of radio-IdUrd compared with untreated cells. A time correlation between S phase accumulation and high radio-IdUrd incorporation was therefore revealed 16 to 24 h post FdUrd pre-treatment. Auger radiation treatment experiments performed on S phase enriched cells showed a significant increase of killing efficacy of 125I-IdUrd compared with cells not pre-treated with FdUrd. A first estimation indicates further that about 100 125I decays were required to reach killing in the targeted cells. Moreover, p53 might play a role on the direct induction of cell death pathways after Auger radiation treatments, as indicated by differential apoptosis and necrosis induction measured by FACS 24 and 48 h after treatment initiation. Concerning in vivo results, we observed a marked DNA incorporation increase of radio-IdUrd after FdUrd pre-treatment in peritoneal carcinomatosis in SCID mice. Even higher incorporation increase was observed after intra-tumoural injection of radio-IdUrd in subcutaneous glioblastoma transplants in nude mice. These tumour models might be further useful for diffusion of radio-IdUrd and Auger radiation therapy studies. In conclusion, these data show a first successful application of thymidine synthesis inhibition able to increase the efficacy of radio-IdUrd Auger radiation treatment. The S phase synchronization combined with a high percentage DNA incorporation of radio-IdUrd delayed post FdUrd pre-treatment provided the expected therapeutic gain in vitro. Further in vivo studies are indicated after the observations of encouraging radio-IdUrd uptake experiments in glioblastoma subcutaneous xenografts and in an ovarian peritoneal carcinomatosis model.
Resumo:
The mammalian circadian timing system consists of a central pacemaker in the brain's suprachiasmatic nucleus (SCN) and subsidiary oscillators in nearly all body cells. The SCN clock, which is adjusted to geophysical time by the photoperiod, synchronizes peripheral clocks through a wide variety of systemic cues. The latter include signals depending on feeding cycles, glucocorticoid hormones, rhythmic blood-borne signals eliciting daily changes in actin dynamics and serum response factor (SRF) activity, and sensors of body temperature rhythms, such as heat shock transcription factors and the cold-inducible RNA-binding protein CIRP. To study these systemic signalling pathways, we designed and engineered a novel, highly photosensitive apparatus, dubbed RT-Biolumicorder. This device enables us to record circadian luciferase reporter gene expression in the liver and other organs of freely moving mice over months in real time. Owing to the multitude of systemic signalling pathway involved in the phase resetting of peripheral clocks the disruption of any particular one has only minor effects on the steady state phase of circadian gene expression in organs such as the liver. Nonetheless, the implication of specific pathways in the synchronization of clock gene expression can readily be assessed by monitoring the phase-shifting kinetics using the RT-Biolumicorder.
Resumo:
Circadian clocks are endogenous timers adjusting behaviour and physiology with the solar day. Synchronized circadian clocks improve fitness and are crucial for our physical and mental well-being. Visual and non-visual photoreceptors are responsible for synchronizing circadian clocks to light, but clock-resetting is also achieved by alternating day and night temperatures with only 2-4 °C difference. This temperature sensitivity is remarkable considering that the circadian clock period (~24 h) is largely independent of surrounding ambient temperatures. Here we show that Drosophila Ionotropic Receptor 25a (IR25a) is required for behavioural synchronization to low-amplitude temperature cycles. This channel is expressed in sensory neurons of internal stretch receptors previously implicated in temperature synchronization of the circadian clock. IR25a is required for temperature-synchronized clock protein oscillations in subsets of central clock neurons. Extracellular leg nerve recordings reveal temperature- and IR25a-dependent sensory responses, and IR25a misexpression confers temperature-dependent firing of heterologous neurons. We propose that IR25a is part of an input pathway to the circadian clock that detects small temperature differences. This pathway operates in the absence of known 'hot' and 'cold' sensors in the Drosophila antenna, revealing the existence of novel periphery-to-brain temperature signalling channels.