46 resultados para surface response analysis
Resumo:
In this work we analyze how patchy distributions of CO2 and brine within sand reservoirs may lead to significant attenuation and velocity dispersion effects, which in turn may have a profound impact on surface seismic data. The ultimate goal of this paper is to contribute to the understanding of these processes within the framework of the seismic monitoring of CO2 sequestration, a key strategy to mitigate global warming. We first carry out a Monte Carlo analysis to study the statistical behavior of attenuation and velocity dispersion of compressional waves traveling through rocks with properties similar to those at the Utsira Sand, Sleipner field, containing quasi-fractal patchy distributions of CO2 and brine. These results show that the mean patch size and CO2 saturation play key roles in the observed wave-induced fluid flow effects. The latter can be remarkably important when CO2 concentrations are low and mean patch sizes are relatively large. To analyze these effects on the corresponding surface seismic data, we perform numerical simulations of wave propagation considering reservoir models and CO2 accumulation patterns similar to the CO2 injection site in the Sleipner field. These numerical experiments suggest that wave-induced fluid flow effects may produce changes in the reservoir's seismic response, modifying significantly the main seismic attributes usually employed in the characterization of these environments. Consequently, the determination of the nature of the fluid distributions as well as the proper modeling of the seismic data constitute important aspects that should not be ignored in the seismic monitoring of CO2 sequestration problems.
Resumo:
Drosophila melanogaster is a model organism instrumental for numerous biological studies. The compound eye of this insect consists of some eight hundred individual ommatidia or facets, ca. 15 µm in cross-section. Each ommatidium contains eighteen cells including four cone cells secreting the lens material (cornea). High-resolution imaging of the cornea of different insects has demonstrated that each lens is covered by the nipple arrays--small outgrowths of ca. 200 nm in diameter. Here we for the first time utilize atomic force microscopy (AFM) to investigate nipple arrays of the Drosophila lens, achieving an unprecedented visualization of the architecture of these nanostructures. We find by Fourier analysis that the nipple arrays of Drosophila are disordered, and that the seemingly ordered appearance is a consequence of dense packing of the nipples. In contrast, Fourier analysis confirms the visibly ordered nature of the eye microstructures--the individual lenses. This is different in the frizzled mutants of Drosophila, where both Fourier analysis and optical imaging detect disorder in lens packing. AFM reveals intercalations of the lens material between individual lenses in frizzled mutants, providing explanation for this disorder. In contrast, nanostructures of the mutant lens show the same organization as in wild-type flies. Thus, frizzled mutants display abnormal organization of the corneal micro-, but not nano-structures. At the same time, nipples of the mutant flies are shorter than those of the wild-type. We also analyze corneal surface of glossy-appearing eyes overexpressing Wingless--the lipoprotein ligand of Frizzled receptors, and find the catastrophic aberration in nipple arrays, providing experimental evidence in favor of the major anti-reflective function of these insect eye nanostructures. The combination of the easily tractable genetic model organism and robust AFM analysis represents a novel methodology to analyze development and architecture of these surface formations.
Resumo:
OBJECTIVES: To determine whether baseline demographic, clinical, articular and laboratory variables predict methotrexate (MTX) poor response in polyarticular-course juvenile idiopathic arthritis. METHODS: Patients newly treated for 6 months with MTX enrolled in the Paediatric Rheumatology International Trials Organization (PRINTO) MTX trial. Bivariate and logistic regression analyses were used to identify baseline predictors of poor response according to the American College of Rheumatology pediatric (ACR-ped) 30 and 70 criteria. RESULTS: In all, 405/563 (71.9%) of patients were women; median age at onset and disease duration were 4.3 and 1.4 years, respectively, with anti-nuclear antibody (ANA) detected in 259/537 (48.2%) patients. With multivariate logistic regression analysis, the most important determinants of ACR-ped 70 non-responders were: disease duration > 1.3 years (OR 1.93), ANA negativity (OR 1.77), Childhood Health Assessment Questionnaire (CHAQ) disability index > 1.125 (OR 1.65) and the presence of right and left wrist activity (OR 1.55). Predictors of ACR-ped 30 non-responders were: ANA negativity (OR 1.92), CHAQ disability index > 1.14 (OR 2.18) and a parent's evaluation of child's overall well-being < or = 4.69 (OR 2.2). CONCLUSION: The subgroup of patients with longer disease duration, ANA negativity, higher disability and presence of wrist activity were significantly associated with a poorer response to a 6-month MTX course.
Resumo:
PURPOSE: In contrast to other human tumors, a repression of the cell-surface glycoprotein CD44 on neuroblastoma is a marker of aggressiveness that usually correlates to N-myc amplification. We thus compared the prognostic value of both markers in the initial staging of 121 children treated for neuroblastoma in collaborative institutions. METHODS: Frozen samples were analyzed by a rapid and well-standardized technique of immunostaining with monoclonal antibodies (MoAbs) against epitopes in the CD44 constant region. RESULTS: In this retrospective series, CD44 was expressed on 102 specimens and strongly correlated with favorable tumor stages and histology, younger age, and normal N-myc copy numbers. In univariate analysis, CD44 expression and normal N-myc were the most powerful markers of favorable clinical outcome (P < 10(-6) and chi 2 = 65.40 and P < 10(-6) and chi 2 = 42.56, respectively), but analysis of CD44 affords significant prognostic discrimination in subgroups of patients with or without N-myc-amplified tumors. In the subgroup of stage IV neuroblastomas, CD44 was the only significant prognostic marker (P < .02, chi 2 = 5.76), whereas N-myc status was not discriminant. In multivariate analysis of five factors, ie, N-myc amplification, CD44 expression, age, tumor stage, and histology, the only independent prognostic factors of event-free survival were CD44 expression and tumor stage. CONCLUSION: The analysis of CD44 cell-surface expression must be recommended as an additional biologic marker in the initial staging of the disease.
Resumo:
Aims: Recently, several clinical trials analyzed if extended duration of treatment with pegylated interferon-alfa and ribavirin over 48 weeks can improve sustained virologic response (SVR) rates in HCV genotype 1-infected patients with slow virologic response. Because results of these clinical trials are conflicting, we performed a metaanalysis to determine the overall impact of extended treatment compared to standard treatment on virologic response rates in treatment-naive HCV genotype 1 slow responders. Methods: Literature search was performed independently by two observers using Pub Med, EMBASE, CENTRAL and abstracts presented in English at international liver and gastroenterology meetings. Randomized controlled clinical trials (RCTs; but studies that re-analyzed data retrospectively RCTs were also allowed) were considered if they included monoinfected treatment-naive HCV genotype 1 patients and compared treatment with pegIFN-alfa 2a or 2b in combination with ribavirin for 48 weeks versus extended treatment (up to 72 weeks) in slow responders. Primary and secondary end points were SVR rates and end-of-treatment (EOT) and relapse rates, respectively. In the present meta-analysis, study endpoints were summarized with a DerSimonian-Laird estimate for binary outcome basing on a random effects model. Results: Literature search yielded seven RTCs addressing the benefit of extended treatment with pegylated interferon-alfa and ribavirin in treatment-naive HCV genotype 1 slow responders. In total, 1330 slow responders were included in our meta-analysis. We show that extended treatment duration compared to the standard of care significantly improves SVR rates in HCV genotype 1 slow responders (12.4% improvement of overall SVR rate, 95% CI 0.055- 0.193, P = 0.0005). In addition, we show that rates of viral relapse were significantly reduced by extended treatment (24.1% reduction of relapse, 95% CI −0.3332 to −0.1487, P < 0.0001), whereas no significant impact of extended treatment on EOT response rates was found. Though extended treatment was burdened with an enhanced rate of premature treatment discontinuation due to interferonalfa- and ribavirin-related side effects, the frequency of serious adverse events was not increased. Conclusions: Treatment extension in HCV genotype 1 slow responders can improve SVR rates in difficult to treat patients and should be considered in patients who need to be treated before specific antivirals will be approved.
Resumo:
The artificial dsRNA polyriboinosinic acid-polyribocytidylic acid, poly(I:C), is a potent adjuvant candidate for vaccination, as it strongly drives cell-mediated immunity. However, because of its effects on non-immune bystander cells, poly(I:C) administration may bear danger for the development of autoimmune diseases. Thus poly(I:C) should be applied in the lowest dose possible. We investigated microspheres carrying surface-assembled poly(I:C) as a two-in-one adjuvant formulation to stimulate maturation of monocyte-derived dendritic cells (MoDCs). Negatively charged polystyrene microspheres were equipped with a poly(ethylene glycol) corona through electrostatically driven surface assembly of a library of polycationic poly(l-lysine)-graft-poly(ethylene glycol) copolymers, PLL-g-PEG. Stable surface assembly of poly(I:C) was achieved by incubation of polymer-coated microspheres in an aqueous poly(I:C) solution. Surface-assembled poly(I:C) exhibited a strongly enhanced efficacy to stimulate maturation of MoDCs by up to two orders of magnitude, as compared to free poly(I:C). Multiple phagocytosis events were the key factor to enhance the efficacy. The cytokine secretion pattern of MoDCs after exposure to surface-assembled poly(I:C) differed from that of free poly(I:C), while their ability to stimulate T cell proliferation was similar. Overall, phagocytic signaling plays an important role in defining the resulting immune response to such two-in-one adjuvant formulations.
Resumo:
The malic enzyme (ME) gene is a target for both thyroid hormone receptors and peroxisome proliferator-activated receptors (PPAR). Within the ME promoter, two direct repeat (DR)-1-like elements, MEp and MEd, have been identified as putative PPAR response elements (PPRE). We demonstrate that only MEp and not MEd is able to bind PPAR/retinoid X receptor (RXR) heterodimers and mediate peroxisome proliferator signaling. Taking advantage of the close sequence resemblance of MEp and MEd, we have identified crucial determinants of a PPRE. Using reciprocal mutation analyses of these two elements, we show the preference for adenine as the spacing nucleotide between the two half-sites of the PPRE and demonstrate the importance of the two first bases flanking the core DR1 in 5'. This latter feature of the PPRE lead us to consider the polarity of the PPAR/RXR heterodimer bound to its cognate element. We demonstrate that, in contrast to the polarity of RXR/TR and RXR/RAR bound to DR4 and DR5 elements respectively, PPAR binds to the 5' extended half-site of the response element, while RXR occupies the 3' half-site. Consistent with this polarity is our finding that formation and binding of the PPAR/RXR heterodimer requires an intact hinge T region in RXR while its integrity is not required for binding of the RXR/TR heterodimer to a DR4.
Resumo:
Based on the partial efficacy of the HIV/AIDS Thai trial (RV144) with a canarypox vector prime and protein boost, attenuated poxvirus recombinants expressing HIV-1 antigens are increasingly sought as vaccine candidates against HIV/AIDS. Here we describe using systems analysis the biological and immunological characteristics of the attenuated vaccinia virus Ankara strain expressing the HIV-1 antigens Env/Gag-Pol-Nef of HIV-1 of clade C (referred as MVA-C). MVA-C infection of human monocyte derived dendritic cells (moDCs) induced the expression of HIV-1 antigens at high levels from 2 to 8 hpi and triggered moDCs maturation as revealed by enhanced expression of HLA-DR, CD86, CD40, HLA-A2, and CD80 molecules. Infection ex vivo of purified mDC and pDC with MVA-C induced the expression of immunoregulatory pathways associated with antiviral responses, antigen presentation, T cell and B cell responses. Similarly, human whole blood or primary macrophages infected with MVA-C express high levels of proinflammatory cytokines and chemokines involved with T cell activation. The vector MVA-C has the ability to cross-present antigens to HIV-specific CD8 T cells in vitro and to increase CD8 T cell proliferation in a dose-dependent manner. The immunogenic profiling in mice after DNA-C prime/MVA-C boost combination revealed activation of HIV-1-specific CD4 and CD8 T cell memory responses that are polyfunctional and with effector memory phenotype. Env-specific IgG binding antibodies were also produced in animals receiving DNA-C prime/MVA-C boost. Our systems analysis of profiling immune response to MVA-C infection highlights the potential benefit of MVA-C as vaccine candidate against HIV/AIDS for clade C, the prevalent subtype virus in the most affected areas of the world.
Resumo:
In this investigation, high-resolution, 1x1x1-mm(3) functional magnetic resonance imaging (fMRI) at 7 T is performed using a multichannel array head coil and a surface coil approach. Scan geometry was optimized for each coil separately to exploit the strengths of both coils. Acquisitions with the surface coil focused on partial brain coverage, while whole-brain coverage fMRI experiments were performed with the array head coil. BOLD sensitivity in the occipital lobe was found to be higher with the surface coil than with the head array, suggesting that restriction of signal detection to the area of interest may be beneficial for localized activation studies. Performing independent component analysis (ICA) decomposition of the fMRI data, we consistently detected BOLD signal changes and resting state networks. In the surface coil data, a small negative BOLD response could be detected in these resting state network areas. Also in the data acquired with the surface coil, two distinct components of the positive BOLD signal were consistently observed. These two components were tentatively assigned to tissue and venous signal changes.
Resumo:
ABSTRACT: BACKGROUND: Plants are sessile and therefore have to perceive and adjust to changes in their environment. The presence of neighbours leads to a competitive situation where resources and space will be limited. Complex adaptive responses to such situation are poorly understood at the molecular level. RESULTS: Using microarrays, we analysed whole-genome expression changes in Arabidopsis thaliana plants subjected to intraspecific competition. The leaf and root transcriptome was strongly altered by competition. Differentially expressed genes were enriched in genes involved in nutrient deficiency (mainly N, P, K), perception of light quality, and responses to abiotic and biotic stresses. Interestingly, performance of the generalist insect Spodoptera littoralis on densely grown plants was significantly reduced, suggesting that plants under competition display enhanced resistance to herbivory. CONCLUSIONS: This study provides a comprehensive list of genes whose expression is affected by intraspecific competition in Arabidopsis. The outcome is a unique response that involves genes related to light, nutrient deficiency, abiotic stress, and defence responses.
Resumo:
Genetic variants influence the risk to develop certain diseases or give rise to differences in drug response. Recent progresses in cost-effective, high-throughput genome-wide techniques, such as microarrays measuring Single Nucleotide Polymorphisms (SNPs), have facilitated genotyping of large clinical and population cohorts. Combining the massive genotypic data with measurements of phenotypic traits allows for the determination of genetic differences that explain, at least in part, the phenotypic variations within a population. So far, models combining the most significant variants can only explain a small fraction of the variance, indicating the limitations of current models. In particular, researchers have only begun to address the possibility of interactions between genotypes and the environment. Elucidating the contributions of such interactions is a difficult task because of the large number of genetic as well as possible environmental factors.In this thesis, I worked on several projects within this context. My first and main project was the identification of possible SNP-environment interactions, where the phenotypes were serum lipid levels of patients from the Swiss HIV Cohort Study (SHCS) treated with antiretroviral therapy. Here the genotypes consisted of a limited set of SNPs in candidate genes relevant for lipid transport and metabolism. The environmental variables were the specific combinations of drugs given to each patient over the treatment period. My work explored bioinformatic and statistical approaches to relate patients' lipid responses to these SNPs, drugs and, importantly, their interactions. The goal of this project was to improve our understanding and to explore the possibility of predicting dyslipidemia, a well-known adverse drug reaction of antiretroviral therapy. Specifically, I quantified how much of the variance in lipid profiles could be explained by the host genetic variants, the administered drugs and SNP-drug interactions and assessed the predictive power of these features on lipid responses. Using cross-validation stratified by patients, we could not validate our hypothesis that models that select a subset of SNP-drug interactions in a principled way have better predictive power than the control models using "random" subsets. Nevertheless, all models tested containing SNP and/or drug terms, exhibited significant predictive power (as compared to a random predictor) and explained a sizable proportion of variance, in the patient stratified cross-validation context. Importantly, the model containing stepwise selected SNP terms showed higher capacity to predict triglyceride levels than a model containing randomly selected SNPs. Dyslipidemia is a complex trait for which many factors remain to be discovered, thus missing from the data, and possibly explaining the limitations of our analysis. In particular, the interactions of drugs with SNPs selected from the set of candidate genes likely have small effect sizes which we were unable to detect in a sample of the present size (<800 patients).In the second part of my thesis, I performed genome-wide association studies within the Cohorte Lausannoise (CoLaus). I have been involved in several international projects to identify SNPs that are associated with various traits, such as serum calcium, body mass index, two-hour glucose levels, as well as metabolic syndrome and its components. These phenotypes are all related to major human health issues, such as cardiovascular disease. I applied statistical methods to detect new variants associated with these phenotypes, contributing to the identification of new genetic loci that may lead to new insights into the genetic basis of these traits. This kind of research will lead to a better understanding of the mechanisms underlying these pathologies, a better evaluation of disease risk, the identification of new therapeutic leads and may ultimately lead to the realization of "personalized" medicine.
Resumo:
BACKGROUND: Artemisinin-resistant Plasmodium falciparum has emerged in the Greater Mekong sub-region and poses a major global public health threat. Slow parasite clearance is a key clinical manifestation of reduced susceptibility to artemisinin. This study was designed to establish the baseline values for clearance in patients from Sub-Saharan African countries with uncomplicated malaria treated with artemisinin-based combination therapies (ACTs). METHODS: A literature review in PubMed was conducted in March 2013 to identify all prospective clinical trials (uncontrolled trials, controlled trials and randomized controlled trials), including ACTs conducted in Sub-Saharan Africa, between 1960 and 2012. Individual patient data from these studies were shared with the WorldWide Antimalarial Resistance Network (WWARN) and pooled using an a priori statistical analytical plan. Factors affecting early parasitological response were investigated using logistic regression with study sites fitted as a random effect. The risk of bias in included studies was evaluated based on study design, methodology and missing data. RESULTS: In total, 29,493 patients from 84 clinical trials were included in the analysis, treated with artemether-lumefantrine (n = 13,664), artesunate-amodiaquine (n = 11,337) and dihydroartemisinin-piperaquine (n = 4,492). The overall parasite clearance rate was rapid. The parasite positivity rate (PPR) decreased from 59.7 % (95 % CI: 54.5-64.9) on day 1 to 6.7 % (95 % CI: 4.8-8.7) on day 2 and 0.9 % (95 % CI: 0.5-1.2) on day 3. The 95th percentile of observed day 3 PPR was 5.3 %. Independent risk factors predictive of day 3 positivity were: high baseline parasitaemia (adjusted odds ratio (AOR) = 1.16 (95 % CI: 1.08-1.25); per 2-fold increase in parasite density, P <0.001); fever (>37.5 °C) (AOR = 1.50 (95 % CI: 1.06-2.13), P = 0.022); severe anaemia (AOR = 2.04 (95 % CI: 1.21-3.44), P = 0.008); areas of low/moderate transmission setting (AOR = 2.71 (95 % CI: 1.38-5.36), P = 0.004); and treatment with the loose formulation of artesunate-amodiaquine (AOR = 2.27 (95 % CI: 1.14-4.51), P = 0.020, compared to dihydroartemisinin-piperaquine). CONCLUSIONS: The three ACTs assessed in this analysis continue to achieve rapid early parasitological clearance across the sites assessed in Sub-Saharan Africa. A threshold of 5 % day 3 parasite positivity from a minimum sample size of 50 patients provides a more sensitive benchmark in Sub-Saharan Africa compared to the current recommended threshold of 10 % to trigger further investigation of artemisinin susceptibility.