134 resultados para staphylococcal cassette chromosome mec typing
Resumo:
The identification of all human chromosome 21 (HC21) genes is a necessary step in understanding the molecular pathogenesis of trisomy 21 (Down syndrome). The first analysis of the sequence of 21q included 127 previously characterized genes and predicted an additional 98 novel anonymous genes. Recently we evaluated the quality of this annotation by characterizing a set of HC21 open reading frames (C21orfs) identified by mapping spliced expressed sequence tags (ESTs) and predicted genes (PREDs), identified only in silico. This study underscored the limitations of in silico-only gene prediction, as many PREDs were incorrectly predicted. To refine the HC21 annotation, we have developed a reliable algorithm to extract and stringently map sequences that contain bona fide 3' transcript ends to the genome. We then created a specific 21q graphical display allowing an integrated view of the data that incorporates new ESTs as well as features such as CpG islands, repeats, and gene predictions. Using these tools we identified 27 new putative genes. To validate these, we sequenced previously cloned cDNAs and carried out RT-PCR, 5'- and 3'-RACE procedures, and comparative mapping. These approaches substantiated 19 new transcripts, thus increasing the HC21 gene count by 9.5%. These transcripts were likely not previously identified because they are small and encode small proteins. We also identified four transcriptional units that are spliced but contain no obvious open reading frame. The HC21 data presented here further emphasize that current gene prediction algorithms miss a substantial number of transcripts that nevertheless can be identified using a combination of experimental approaches and multiple refined algorithms.
Resumo:
Inter-individual differences in gene expression are likely to account for an important fraction of phenotypic differences, including susceptibility to common disorders. Recent studies have shown extensive variation in gene expression levels in humans and other organisms, and that a fraction of this variation is under genetic control. We investigated the patterns of gene expression variation in a 25 Mb region of human chromosome 21, which has been associated with many Down syndrome (DS) phenotypes. Taqman real-time PCR was used to measure expression variation of 41 genes in lymphoblastoid cells of 40 unrelated individuals. For 25 genes found to be differentially expressed, additional analysis was performed in 10 CEPH families to determine heritabilities and map loci harboring regulatory variation. Seventy-six percent of the differentially expressed genes had significant heritabilities, and genomewide linkage analysis led to the identification of significant eQTLs for nine genes. Most eQTLs were in trans, with the best result (P=7.46 x 10(-8)) obtained for TMEM1 on chromosome 12q24.33. A cis-eQTL identified for CCT8 was validated by performing an association study in 60 individuals from the HapMap project. SNP rs965951 located within CCT8 was found to be significantly associated with its expression levels (P=2.5 x 10(-5)) confirming cis-regulatory variation. The results of our study provide a representative view of expression variation of chromosome 21 genes, identify loci involved in their regulation and suggest that genes, for which expression differences are significantly larger than 1.5-fold in control samples, are unlikely to be involved in DS-phenotypes present in all affected individuals.
Resumo:
Objective: The purpose of this study was to find loci for major depression via linkage analysis of a large sibling pair sample. Method: The authors conducted a genome-wide linkage analysis of 839 families consisting of 971 affected sibling pairs with severe recurrent major depression, comprising waves I and II of the Depression Network Study cohort. In addition to examining affected status, linkage analyses in the full data set were performed using diagnoses restricted by impairment severity, and association mapping of hits in a large case-control data set was attempted. Results: The authors identified genome-wide significant linkage to chromosome 3p25-26 when the diagnoses were restricted by severity, which was a maximum LOD score of 4.0 centered at the linkage marker D3S1515. The linkage signal identified was genome-wide significant after correction for the multiple phenotypes tested, although subsequent association mapping of the region in a genome-wide association study of a U.K. depression sample did not provide significant results. Conclusions: The authors report a genome-wide significant locus for depression that implicates genes that are highly plausible for involvement in the etiology of recurrent depression. Despite the fact that association mapping in the region was negative, the linkage finding was replicated by another group who found genome-wide-significant linkage for depression in the same region. This suggests that 3p25-26 is a new locus for severe recurrent depression. This represents the first report of a genome-wide significant locus for depression that also has an independent genome-wide significant replication.
Resumo:
This study aims to assess prevalence and pregnancy outcome for sex chromosome trisomies (SCTs) diagnosed prenatally or in the first year of life. Data held by the European Surveillance of Congenital Anomalies (EUROCAT) database on SCT cases delivered 2000-2005 from 19 population-based registries in 11 European countries covering 2.5 million births were analysed. Cases included were livebirths diagnosed to 1 year of age, fetal deaths from 20 weeks gestation and terminations of pregnancy for fetal anomaly (TOPFA). In all, 465 cases of SCT were diagnosed between 2000 and 2005, a prevalence of 1.88 per 10,000 births (95% CI 1.71-2.06). Prevalence of XXX, XXY and XYY were 0.54 (95% CI 0.46-0.64), 1.04 (95% CI 0.92-1.17) and 0.30 (95% CI 0.24-0.38), respectively. In all, 415 (89%) were prenatally diagnosed and 151 (36%) of these resulted in TOPFA. There was wide country variation in prevalence (0.19-5.36 per 1000), proportion prenatally diagnosed (50-100%) and proportion of prenatally diagnosed resulting in TOPFA (13-67%). Prevalence of prenatally diagnosed cases was higher in countries with high prenatal detection rates of Down syndrome. The EUROCAT prevalence rate for SCTs diagnosed prenatally or up to 1 year of age represents 12% of the prevalence expected from cytogenetic studies of newborn babies, as the majority of cases are never diagnosed or are diagnosed later in life. There is a wide variation between European countries in prevalence, prenatal detection and TOPFA proportions, related to differences in screening policies as well as organizational and cultural factors.
Resumo:
A child with clinical features associated a trisomy for the distal part of 9q was shown to have the following abnormal chromosome complement : 47,XY,+t)X;9) (Xpter yields Xq24:9q31 yields 9qter), inv 9(p11q13), var 14 (14pQFQ34).
Resumo:
Abstract Background: Extrapulmonary tuberculosis (EPTB) constitutes about 10% to 20% of all cases of tuberculosis in immunocompetent patients and more than 50% of the cases in HIV-positive individuals worldwide. Little information is available on the clonal diversity of Mycobacterium species in Ethiopia from EPTB. Methods: This study was carried out on smear-negative EPTB patients to molecularly characterize Mycobacterium tuberculosis complex strains. A questionnaire, smear staining, culture, deletion typing, and spoligotyping were employed. Results: The proportional distribution of EPTB and isolates did not vary substantially (p > 0.05) amongst the socio-demographic parameters considered in the current investigation. Out of 98 fine needle aspirates processed for culture, 36.7% (36/98) were positive for mycobacterial growth. Further speciation of those culture-positive isolates showed that 88.9% were M. tuberculosis and the remaining could be non-tuberculous mycobacterial species. Spoligotyping revealed 16 clusters out of which 2 were new to the SITVIT database. The most dominant spoligotypes were SIT54, SIT53, and SIT149 in decreasing order. SIT54, SIT134, SIT173, SIT345, SIT357, SIT926, SIT91088, and SIT1580 were reported for the first time in Ethiopia. The family with the highest frequency identified was M. tuberculosis family T1, followed by family 33. Most of the strains belonged to Euro-American (61.4%) and Indo-Oceanic (36.3%) lineages. Conclusions: The present study shows the importance of M. tuberculosis as a major cause of EPTB in the study area. Moreover, the majority of isolates of M. tuberculosis were found in clusters, suggesting the possibility of the existence of recent transmission. This warrants strengthening of the control programs for EPTB in the study area.
Resumo:
Genetic crosses in many organisms have shown that alleles of unlinked genes generally assort independently of one another during gamete formation. However, variation in chromosome size may affect the process of meiosis and lead to nonindependent assortment of chromosomes. We therefore examined chromosomes with insertions and found that they preferentially segregated away from the X chromosome during meiosis in Caenorhabditis elegans males. Conversely, chromosomes with deletions preferentially segregated with the X chromosome. The degree of segregation bias was significantly associated with the length of the insertion or deletion. Simulations revealed that this segregation bias leads to genome size reduction in hermaphroditic species, a pattern consistent with differences in genome sizes in the genus Caenorhabditis. These results suggest that insertions and deletions may affect chromosome segregation patterns.
Resumo:
Ape chromosomes homologous to human chromosomes 14 and 15 were generated by a fission event of an ancestral submetacentric chromosome, where the two chromosomes were joined head-to-tail. The hominoid ancestral chromosome most closely resembles the macaque chromosome 7. In this work, we provide insights into the evolution of human chromosomes 14 and 15, performing a comparative study between macaque boundary region 14/15 and the orthologous human regions. We construct a 1.6-Mb contig of macaque BAC clones in the region orthologous to the ancestral hominoid fission site and use it to define the structural changes that occurred on human 14q pericentromeric and 15q subtelomeric regions. We characterize the novel euchromatin-heterochromatin transition region (∼20 Mb) acquired during the neocentromere establishment on chromosome 14, and find it was mainly derived through pericentromeric duplications from ancestral hominoid chromosomes homologous to human 2q14-qter and 10. Further, we show a relationship between evolutionary hotspots and low-copy repeat loci for chromosome 15, revealing a possible role of segmental duplications not only in mediating but also in "stitching" together rearrangement breakpoints.
Resumo:
Y chromosome variation is determined by several confounding factors including mutation rate, effective population size, demography, and selection. Disentangling these factors is essential to better understand the evolutionary properties of the Y chromosome. We analyzed genetic variation on the Y chromosome, X chromosome, and mtDNA of the greater white-toothed shrew, a species with low variance in male reproductive success and limited sex-biased dispersal, which enables us to control to some extent for life-history effects. We also compared ancestral (Moroccan) to derived (European) populations to investigate the role of demographic history in determining Y variation. Recent colonization of Europe by a small number of founders (combined with low mutation rates) is largely responsible for low diversity observed on the European Y and X chromosomes compared to mtDNA. After accounting for mutation rate, copy number, and demography, the Y chromosome still displays a deficit in variation relative to the X in both populations. This is possibly influenced by directional selection, but the slightly higher variance in male reproductive success is also likely to play a role, even though the difference is small compared to that in highly polygynous species. This study illustrates that demography and life-history effects should be scrutinized before inferring strong selective pressure as a reason for low diversity on the Y chromosome.
Resumo:
BACKGROUND: Due to its history, with a high number of migration events, the Mediterranean basin represents a challenging area for population genetic studies. A large number of genetic studies have been carried out in the Mediterranean area using different markers but no consensus has been reached on the genetic landscape of the Mediterranean populations. In order to further investigate the genetics of the human Mediterranean populations, we typed 894 individuals from 11 Mediterranean populations with 25 single-nucleotide polymorphisms (SNPs) located on the X-chromosome. RESULTS: A high overall homogeneity was found among the Mediterranean populations except for the population from Morocco, which seemed to differ genetically from the rest of the populations in the Mediterranean area. A very low genetic distance was found between populations in the Middle East and most of the western part of the Mediterranean Sea.A higher migration rate in females versus males was observed by comparing data from X-chromosome, mt-DNA and Y-chromosome SNPs both in the Mediterranean and a wider geographic area.Multilocus association was observed among the 25 SNPs on the X-chromosome in the populations from Ibiza and Cosenza. CONCLUSION: Our results support both the hypothesis of (1) a reduced impact of the Neolithic Wave and more recent migration movements in NW-Africa, and (2) the importance of the Strait of Gibraltar as a geographic barrier. In contrast, the high genetic homogeneity observed in the Mediterranean area could be interpreted as the result of the Neolithic wave caused by a large demic diffusion and/or more recent migration events. A differentiated contribution of males and females to the genetic landscape of the Mediterranean area was observed with a higher migration rate in females than in males. A certain level of background linkage disequilibrium in populations in Ibiza and Cosenza could be attributed to their demographic background.
Resumo:
Polysaccharide sidechains attached to proteins play important roles in cell-cell and receptor-ligand interactions. Variation in the carbohydrate component has been extensively studied for the iron transport protein transferrin, because serum levels of the transferrin isoforms asialotransferrin + disialotransferrin (carbohydrate-deficient transferrin, CDT) are used as biomarkers of excessive alcohol intake. We conducted a genome-wide association study to assess whether genetic factors affect CDT concentration in serum. CDT was measured in three population-based studies: one in Switzerland (CoLaus study, n = 5181) and two in Australia (n = 1509, n = 775). The first cohort was used as the discovery panel and the latter ones served as replication. Genome-wide single-nucleotide polymorphism (SNP) typing data were used to identify loci with significant associations with CDT as a percentage of total transferrin (CDT%). The top three SNPs in the discovery panel (rs2749097 near PGM1 on chromosome 1, and missense polymorphisms rs1049296, rs1799899 in TF on chromosome 3) were successfully replicated , yielding genome-wide significant combined association with CDT% (P = 1.9 × 10(-9), 4 × 10(-39), 5.5 × 10(-43), respectively) and explain 5.8% of the variation in CDT%. These allelic effects are postulated to be caused by variation in availability of glucose-1-phosphate as a precursor of the glycan (PGM1), and variation in transferrin (TF) structure.
Resumo:
A Swiss frontotemporal dementia (FTD) kindred with extrapyramidal-like features and without motor neuron disease shows a brain pathology with ubiquitin-positive but tau-negative inclusions. Tau and neurofilament modifications are now studied here in three recently deceased family members. No major and specific decrease of tau was observed as described by others in, e.g., sporadic cases of FTD with absence of tau-positive inclusions. However, a slight decrease of tau, neurofilament, and synaptic proteins, resulting from frontal atrophy was detected. In parallel, polymorphic markers on chromosome 17q21-22, the centromeric region of chromosome 3 and chromosome 9, were tested. Haplotype analysis showed several recombination events for chromosomes 3 and 17, but patients shared a haplotype on chromosome 9q21-22. However as one of the patients exhibited Alzheimer and vascular dementia pathology with uncertain concomitant FTD, this locus is questionable. Altogether, these data indicate principally that the Swiss kindred is unlinked to locus 17q21-22, and that tau is not at the origin of FTD in this family.
Resumo:
Sterol uptake in fungi is a multistep process that involves interaction between external sterols and the cell wall, incorporation of sterol molecules into the plasma membrane, and subsequent integration into intracellular membranes for turnover. ATP-binding cassette (ABC) transporters have been implicated in sterol uptake, but key features of their activity remain to be elucidated. Here, we apply fluorescent cholesterol (NBD-cholesterol) to monitor sterol uptake under anaerobic and aerobic conditions in two fungal species, Candida glabrata (Cg) and Saccharomyces cerevisiae (Sc). We found that in both fungal species, ABC transporter-dependent uptake of cholesterol under anaerobic conditions and in mutants lacking HEM1 gene is promoted in the presence of the serum protein albumin that is able to bind the sterol molecule. Furthermore, the C. glabrata ABC transporter CgAus1p expressed in S. cerevisiae requires the presence of serum or albumin for efficient cholesterol uptake. These results suggest that albumin can serve as sterol donor in ABC transporter-dependent sterol uptake, a process potentially important for growth of C. glabrata inside infected humans.
Resumo:
In 1996 the International Sorex araneus Cytogenetics Committee (ISACC) published a comprehensive list of 50 chromosome races of the common shrew Sorex araneus (lima et al. 1996). Since that time twenty one new races have been described and three races have been removed from the list. The present list summarises the data about races described since the 1996 publication. The rules introduced by Searle et al. (1991) and Hausser et al. (1994) were followed in the compilation of the list. It can be considered a reference for further studies of evolutionary relationships between the chromosome races of Sorex araneus. A summary table of all the 68 known races, arranged alphabetically according to their names, is given.