47 resultados para southwestern histochemistry
Resumo:
Pre- and postnatal corticosteroids are often used in perinatal medicine to improve pulmonary function in preterm infants. To mimic this clinical situation, newborn rats were treated systemically with dexamethasone (Dex), 0.1-0.01 mg/kg/day on days P1-P4. We hypothesized that postnatal Dex may have an impact on alveolarization by interfering with extracellular matrix proteins and cellular differentiation. Morphological alterations were observed on 3D images obtained by high-resolution synchrotron radiation X-ray tomographic microscopy. Alveolarization was quantified stereologically by estimating the formation of new septa between days P4 and P60. The parenchymal expression of tenascin-C (TNC), smooth muscle actin (SMA), and elastin was measured by immunofluorescence and gene expression for TNC by qRT-PCR. After Dex treatment, the first phase of alveolarization was significantly delayed between days P6 and P10, whereas the second phase was accelerated. Elastin and SMA expressions were delayed by Dex treatment, whereas TNC expression was delayed and prolonged. A short course of neonatal steroids impairs the first phase of alveolarization, most likely by altering the TNC and elastin expression. Due to an overshooting catch-up during the second phase of alveolarization, the differences disappear when the animals reach adulthood.
Resumo:
The Fuerteventura Jurassic sedimentary succession consists of oceanic and elastic deposits, the latter derived from the southwestern Moroccan continental margin. Normal mid-oceanic-ridge basalt (N-MORB) flows and breccias are found at the base of the sequence and witness sea-floor spreading events in the central Atlantic. These basalts were extruded in a postrift environment (post-late Pliensbachian), We propose a Toarcian age for the Atlantic oceanic floor in this region, on the basis of the presence higher up in the sequence of the Bositra buchi filament microfacies (Aalenian-Bajocian) and of elastic deposits reflecting tectono-eustatic events (e.g,, late Toarcian to mid-Callovian erosion of the rift shoulder). The S-l sea-floor oceanic magnetic anomaly west of Fuerteventura is therefore at least Toarcian in age. The remaining sequence records Atlantic-Tethyan basinal facies (e.g., Callovian-Oxfordian red clays, Aptian-Albian black shales) alternating with elastic deposits (e.g., Kimmeridgian-Berriasian periplatform calciturbidites and a Lower Cretaceous deep-sea fan system). The Fuerteventura N-MORB outcrops represent the only Early Jurassic oceanic basement described so far in the central Atlantic. They are covered by a 1600 m, nearly continuous sedimentary sequence which extends to Upper Cretaceous facies.
Resumo:
The last decade has presented studies providing evidence for astrocytic exocytosis of glutamate potentiating nerve signals. To make further investigations into this astrocytic attribute we investigated the localization of the vesicular glutamate transporter 1 (VGLUT1) in small processes of astrocytes close to glutamatergic terminals in frontal cortex, striatum, molecular layer of hippocampus and stratum radiatum of hippocampus. According to the importance of VGLUT1 in glutamate exocytosis the presence of VGLUT1 in astrocytic processes indicates the ability to exocytose glutamate. METHODS: For qualitative analysis we used immunoflourescence histochemistry. Sections from rat frontal cortex, striatum, molecular layer of hippocampus and stratum radiatum of hippocampus were labeled with antibodies against glutamine synthetase (an astrocytic marker) and VGLUT1. Z-stacks of 4.5-5 lm obtained by confocal microscopy from each section were deconvolved and 3D reconstructed in Amira. Small astrocytic processes were analysed for the presence of VGLUT1 inside the processes. The quantitative analysis was done by immunogold labeling. Ultrathin sections from each brain region were labeled for GLT (an astrocytic marker) and VGLUT1. Pictures obtained by electron microscopy were analysed and the point density (gold particles/nm2) for VGLUT1 in astrocytic processes was measured. RESULTS: Using confocal 3D reconstructions we were qualitatively able to identify VGLUT1 within small processes of astrocytes in all four brain regions. Reflecting our qualitative findings the electron microscopical immunogold quantifications showed a significant density of gold particles signaling VGLUT1 in astrocytic processes in all four brain regions. CONCLUSION: We extend the results of previous studies on glutamate release from astrocytes, which have focused on the hippocampus, proposing that astrocytic exocytosis of glutamate is a global phenomenon in the brain.
Resumo:
Radioiodinated murine monoclonal antibodies (Mabs) 81C6, Me 1-14, C12, D12, and E9, made against or reactive with human gliomas but not normal brain, and Mab UJ13A, a pan-neuroectodermal Mab reactive with normal human glial and neural cells, were evaluated in paired label studies in the D-54 MG subcutaneous human glioma xenograft model system in nude mice. Following intravenous injection in the tail vein of mice bearing 200-400 mm3 tumors, specific localization of Mabs to tumor over time (6 h-9 days) was evaluated by tissue counting; each Mab demonstrated a unique localization profile. The comparison of localization indices (LI), determined as a ratio of tissue level of Mab to control immunoglobulin with simultaneous correction for blood levels of each, showed Mabs 81C6 and Me 1-14 to steadily accumulate in glioma xenografts, maintaining LI from 5-20 at 7-9 days after Mab injection. Mab UJ13A peaked at day 1, maintaining this level through day 2, and declining thereafter. Mabs D12 and C12 peaked at days 3 and 4, respectively, and E9 maintained an LI of greater than 3 from days 3-9. Percent injected dose localized/g of tumor varied from a peak high of 16% (81C6) to a low of 5% (Me 1-14 and UJ13A). Immunoperoxidase histochemistry, performed with each Mab on a battery of primary human brain neoplasms, revealed that Mabs 81C6 and E9, which demonstrated the highest levels of percent injected dose localized/g of tumor over time, reacted with antigens expressed in the extracellular matrix. This finding suggests that extracellular matrix localization of antigen represents a biologically significant factor affecting localization and/or binding in the xenograft model used. The demonstration of significant localization, varied kinetics and patterns of localization of this localizing Mab panel warrants their continued investigation as potential imaging and therapeutic agents for human trials.
Resumo:
Results of a field and microstructural study between the northern and the central bodies of the Lanzo plagioclase peridotite massif (NW Italy) indicate that the spatial distribution of deformation is asymmetric across kilometre-scale mantle shear zones. The southwestern part of the shear zone (footwall) shows a gradually increasing degree of deformation from porphyroclastic peridotites to mylonite, whereas the northeastern part (hanging wall) quickly grades into weakly deformed peridotites. Discordant gabbroic and basaltic dykes are asymmetrically distributed and far more abundant in the footwall of the shear zone. The porphyroclastic peridotite displays porphyroclastic zones and domains of igneous crystallization whereas mylonites are characterized by elongated porphyroclasts, embedded between fine-grained, polycrystalline bands of olivine, plagioclase, clinopyroxene, orthopyroxene, spinel, rare titanian pargasite, and domains of recrystallized olivine. Two types of melt impregnation textures have been found: (1) clinopyroxene porphyroclasts incongruently reacted with migrating melt to form orthopyroxene plagioclase; (2) olivine porphyroclasts are partially replaced by interstitial orthopyroxene. The meltrock reaction textures tend to disappear in the mylonites, indicating that deformation in the mylonite continued under subsolidus conditions. The pyroxene chemistry is correlated with grain size. High-Al pyroxene cores indicate high temperatures (11001030C), whereas low-Al neoblasts display lower final equilibration temperatures (860C). The spinel Cr-number [molar Cr/(Cr Al)] and TiO2 concentrations show extreme variability covering almost the entire range known from abyssal peridotites. The spinel compositions of porphyroclastic peridotites from the central body are more variable than spinel from mylonite, mylonite with ultra-mylonite bands, and porphyroclastic rocks of the northern body. The spinel compositions probably indicate disequilibrium and would favour rapid cooling, and a faster exhumation of the central peridotite body, relative to the northern one. Our results indicate that melt migration and high-temperature deformation are juxtaposed both in time and space. Meltrock reaction may have caused grain-size reduction, which in turn led to localization of deformation. It is likely that melt-lubricated, actively deforming peridotites acted as melt focusing zones, with permeabilities higher than the surrounding, less deformed peridotites. Later, under subsolidus conditions, pinning in polycrystalline bands in the mylonites inhibited substantial grain growth and led to permanent weak zones in the upper mantle peridotite, with a permeability that is lower than in the weakly deformed peridotites. Such an inversion in permeability might explain why actively deforming, fine-grained peridotite mylonite acted as a permeability barrier and why ascending mafic melts might terminate and crystallize as gabbros along actively deforming shear zones. Melt-lubricated mantle shear zones provide a mechanism for explaining the discontinuous distribution of gabbros in oceancontinent transition zones, oceanic core complexes and ultraslow-spreading ridges.
Resumo:
AIMS/HYPOTHESIS: Intramyocellular lipids, including diacylglycerol (DAG) and ceramides, have been linked to insulin resistance. This randomised repeated-measures study examined the effects of diet-induced weight loss (DIWL) and aerobic exercise (EX) on insulin sensitivity and intramyocellular triacylglycerol (IMTG), DAG and ceramide. METHODS: Sixteen overweight to obese adults (BMI 30.6 ± 0.8; 67.2 ± 4.0 years of age) with either impaired fasting glucose, or impaired glucose tolerance completed one of two lifestyle interventions: DIWL (n = 8) or EX (n = 8). Insulin sensitivity was determined using hyperinsulinaemic-euglycaemic clamps. Intramyocellular lipids were measured in muscle biopsies using histochemistry and tandem mass spectrometry. RESULTS: Insulin sensitivity was improved with DIWL (20.6 ± 4.7%) and EX (19.2 ± 12.9%). Body weight and body fat were decreased by both interventions, with greater decreases in DIWL compared with EX. Muscle glycogen, IMTG content and oxidative capacity were all significantly (p < 0.05) decreased with DIWL and increased with EX. There were decreases in DAG with DIWL (-12.4 ± 14.6%) and EX (-40.9 ± 12.0%). Ceramide decreased with EX (-33.7 ± 11.2%), but not with DIWL. Dihydroceramide was decreased with both interventions. Sphingosine was decreased only with EX. Changes in total DAG, total ceramides and other sphingolipids did not correlate with changes in glucose disposal. Stearoyl-coenzyme A desaturase 1 (SCD1) content was decreased with DIWL (-19.5 ± 8.5%, p < 0.05), but increased with EX (19.6 ± 7.4%, p < 0.05). Diacylglycerol acyltransferase 1 (DGAT1) was unchanged with the interventions. CONCLUSIONS/INTERPRETATION: Diet-induced weight loss and exercise training both improved insulin resistance and decreased DAG, while only exercise decreased ceramides, despite the interventions having different effects on IMTG. These alterations may be mediated through differential changes in skeletal muscle capacity for oxidation and triacylglycerol synthesis. TRIAL REGISTRATION: ClinicalTrials.gov NCT00766298.
Resumo:
The end-Permian mass extinction greatly diminished marine diversity and brought about a whole-scale restructuring of marine ecosystems; these ecosystem changes also profoundly affected the sedimentary record. Data presented here, attained through facies analyses of strata deposited during the immediate aftermath of the end-Permian mass extinction (southern Turkey) and at the close of the Early Triassic (southwestern United States), in combination with a literature review, show that sedimentary systems were profoundly affected by: (1) a reduction in biotic diversity and abundance and (2) long-term environmental fluctuations that resulted from the end-Permian crisis. Lower Triassic strata display widespread microbialite and carbonate seafloor fan development and contain indicators of suppressed infaunal bioturbation such as flat-pebble conglomerates and wrinkle structures (facies considered unusual in post-Cambrian subtidal deposits). Our observations suggest that depositional systems, too, respond to biotic crises, and that certain facies may act as barometers of ecologic and environmental change independent of fossil assemblage analyses. Close investigation of facies changes during other critical times in Earth history may serve as an important tool in interpreting the ecology of metazoans and their environment.
Resumo:
Embryonic stem (ES) cell-derived cardiomyocytes recapitulate cardiomyogenesis in vitro and are a potential source of cells for cardiac repair. However, this requires enrichment of mixed populations of differentiating ES cells into cardiomyocytes. Toward this goal, we have generated bicistronic vectors that express both the blasticidin S deaminase (bsd) gene and a fusion protein consisting of either myosin light chain (MLC)-3f or human alpha-actinin 2A and enhanced green fluorescent protein (EGFP) under the transcriptional control of the alpha-cardiac myosin heavy chain (alpha-MHC) promoter. Insertion of the DNase I-hypersensitive site (HS)-2 element from the beta-globin locus control region, which has been shown to reduce transgene silencing in other cell systems, upstream of the transgene promoter enhanced MLC3f-EGFP gene expression levels in mouse ES cell lines. The alpha-MHC-alpha-actinin-EGFP, but not the alpha-MHC-MLC3f-EGFP, construct resulted in the correct incorporation of the newly synthesized fusion protein at the Z-band of the sarcomeres in ES cell-derived cardiomyocytes. Exposure of embryoid bodies to blasticidin S selected for a relatively pure population of cardiomyocytes within 3 days. Myofibrillogenesis could be monitored by fluorescence microscopy in living cells due to sarcomeric epitope tagging. Therefore, this genetic system permits the rapid selection of a relatively pure population of developing cardiomyocytes from a heterogeneous population of differentiating ES cells, simultaneously allowing monitoring of early myofibrillogenesis in the selected myocytes
Resumo:
Ecological parameters vary in space, and the resulting heterogeneity of selective forces can drive adaptive population divergence. Clinal variation represents a classical model to study the interplay of gene flow and selection in the dynamics of this local adaptation process. Although geographic variation in phenotypic traits in discrete populations could be remainders of past adaptation, maintenance of adaptive clinal variation requires recurrent selection. Clinal variation in genetically determined traits is generally attributed to adaptation of different genotypes to local conditions along an environmental gradient, although it can as well arise from neutral processes. Here, we investigated whether selection accounts for the strong clinal variation observed in a highly heritable pheomelanin-based color trait in the European barn owl by comparing spatial differentiation of color and of neutral genes among populations. Barn owl's coloration varies continuously from white in southwestern Europe to reddish-brown in northeastern Europe. A very low differentiation at neutral genetic markers suggests that substantial gene flow occurs among populations. The persistence of pronounced color differentiation despite this strong gene flow is consistent with the hypothesis that selection is the primary force maintaining color variation among European populations. Therefore, the color cline is most likely the result of local adaptation.
Resumo:
Introduction: Approximately one fifth of stage I and II colon cancer patients will suffer from recurrent disease. This is partly due to the presence of small nodal tumour infiltrates, which are undetected by standard histopathology using Haematoxylin & Eosin (H&E) staining on one slice and thus may not receive beneficial adjuvant therapy. A new diagnostic, semi-automatic system, called one-step nucleic acid amplification (OSNA), was recently designed for the detection of cytokeratin 19 (CK19) mRNA as a surrogate for lymph node metastases. The objective of the present investigation was to compare the performance of OSNA with both standard H&E as well as intensive histopathologic analyses in the detection of colon cancer lymph node micro- and macro-metastases.Methods: In this prospective study 313 lymph nodes from 22 consecutive stage I - III colon cancer patients were assessed. Half of each lymph node was analysed initially based on one slice of H&E followed by an intensive histologic work-up (5 levels of H&E and immuno-histochemistry staining for each slice), the other half was analysed using OSNA.Results: All OSNA results were available after less than 40 minutes. Fifty-one lymph nodes were positive and 246 lymph nodes negative with both OSNA and standard H&E. OSNA was more sensitive to detect small nodal tumor infiltrates compared to H&E (11 OSNA pos. /H&E neg.). Compared to intensive histopathologic analyses, OSNA had a sensitivity of 94.5% and a specificity of 97.6% to detect lymph node micro- and macro-metastases with a concordance rate of 97.1%. An upstaging due to OSNA was found in 2/13 (15.3%) initially node negative colon cancer patients.Conclusion: OSNA appears to be a powerful and promising molecular tool for the detection of lymph node macro- and micro-metastases in colon cancer patients. OSNA has a similar performance in the detection of micro- and macro-metastases compared to intensive histopathologic investigations and appears to be superior to standard histology with H&E. Since the use of OSNA allows the analysis of the whole lymph node, the problem of sampling bias and undetected tumor deposits due to uninvestigated material will be overcome in the future and OSNA may thus improve staging in colon cancer patients. It is hoped that this improved staging will lead to better patient selection for adjuvant therapy and consecutively improved local and distant control as well as better overall survival.
Resumo:
We examined the sequence variation of mitochondrial DNA control region and cytochrome b gene of the house mouse (Mus musculus sensu lato) drawn from ca. 200 localities, with 286 new samples drawn primarily from previously unsampled portions of their Eurasian distribution and with the objective of further clarifying evolutionary episodes of this species before and after the onset of human-mediated long-distance dispersals. Phylogenetic analysis of the expanded data detected five equally distinct clades, with geographic ranges of northern Eurasia (musculus, MUS), India and Southeast Asia (castaneus, CAS), Nepal (unspecified, NEP), western Europe (domesticus, DOM) and Yemen (gentilulus). Our results confirm previous suggestions of Southwestern Asia as the likely place of origin of M. musculus and the region of Iran, Afghanistan, Pakistan, and northern India, specifically as the ancestral homeland of CAS. The divergence of the subspecies lineages and of internal sublineage differentiation within CAS were estimated to be 0.37-0.47 and 0.14-0.23 million years ago (mya), respectively, assuming a split of M. musculus and Mus spretus at 1.7 mya. Of the four CAS sublineages detected, only one extends to eastern parts of India, Southeast Asia, Indonesia, Philippines, South China, Northeast China, Primorye, Sakhalin and Japan, implying a dramatic range expansion of CAS out of its homeland during an evolutionary short time, perhaps associated with the spread of agricultural practices. Multiple and non-coincident eastward dispersal events of MUS sublineages to distant geographic areas, such as northern China, Russia and Korea, are inferred, with the possibility of several different routes.
Resumo:
The deposition of Late Pleistocene and Holocene sediments in the high-altitude lake Meidsee (located at an altitude of 2661 m a.s.l. in the Southwestern Alps) strikingly coincided with global ice-sheet and mountain-glacier decay in the Alpine forelands and the formation of perialpine lakes. Radiocarbon ages of bottom-core sediments point out (pre-) Holocene ice retreat below 2700 m a.s.l., at about 16, 13, 10, and 9 cal. kyr BP. The Meidsee sedimentary record therefore provides information about the high-altitude Alpine landscape evolution since the Late Pleistocene/Holocene deglaciation in the Swiss Southwestern Alps. Prior to 5 cal. kyr BP, the C/N ratio and the isotopic composition of sedimentary organic matter (delta N-15(org), delta C-13(org)) indicate the deposition of algal-derived organic matter with limited input of terrestrial organic matter. The early Holocene and the Holocene climatic optimum (between 7.0 and 5.5 cal. kyr BP) were characterized by low erosion (decreasing magnetic susceptibility, chi) and high content of organic matter (C-org > 13 wt.%), enriched in C-13(org) (>-18 parts per thousand) with a low C/N (similar to 10) ratio, typical of modern algal matter derived from in situ production. During the late Holocene, there was a long-term increasing contribution of terrestrial organic matter into the lake (C/N > 11), with maxima between 2.4 and 0.9 cal. kyr BP. A major environmental change took place 800 years ago, with an abrupt decrease in the relative contribution of terrestrial organic material into the lake compared with aquatic organic material which subsequently largely dominated (C/N drop from 16 to 10). Nonetheless, this event was marked by a rise in soil erosion (chi), in nutrients input (N and P contents) and in anthropogenic lead deposition, suggesting a human disturbance of Alpine ecosystems 800 years ago. Indeed, this time period coincided with the migration of the Walser Alemannic people in the region, who settled at relatively high altitude in the Southwestern Alps for farming and maintaining Alpine passes.
Resumo:
The results of a coupled, in situ laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) U-Pb study on zircon and geochemical characterization of the Eastern Cordilleran intrusives of Peru reveal 1.15 Ga of intermittent magmatism along central Western Amazonia, the Earth's oldest active open continental margin. The eastern Peruvian batholiths are volumetrically dominated by plutonism related to the assembly and breakup of Pangea during the Paleozoic-Mesozoic transition. A Carboniferous-Permian (340-285 Ma) continental arc is identified along the regional orogenic strike from the Ecuadorian border (6 degrees S) to the inferred inboard extension of the Arequipa-Antofalla terrane in southern Peru (14 degrees S). Widespread crustal extension and thinning, which affected western Gondwana throughout the Permian and Triassic resulted in the intrusion of the late- to post-tectonic La Merced-San Ramon-type anatectites dated between 275 and 220 Ma, while the emplacement of the southern Cordillera de Carabaya peraluminous granitoids in the Late Triassic to Early Jurassic (220-190 Ma) represents, temporally and regionally, a separate tectonomagmatic event likely related to resuturing of the Arequipa-Antofalla block. Volcano-plutonic complexes and stocks associated with the onset of the present Andean cycle define a compositionally bimodal alkaline suite and cluster between 180 and 170 Ma. A volumetrically minor intrusive pulse of Oligocene age (ca. 30 Ma) is detected near the southwestern Cordilleran border with the Altiplano. Both post-Gondwanide (30-170 Ma), and Precambrian plutonism (691-1123 Ma) are restricted to isolated occurrences spatially comprising less than 15% of the Eastern Cordillera intrusives. Only one remnant of a Late Ordovician intrusive belt is recognized in the Cuzco batholith (446.5 +/- 9.7 Ma) indicating that the Famatinian arc system previously identified in Peru along the north-central Eastern Cordillera and the coastal Arequipa-Antofalla terrane also existed inboard of this parautochthonous crustal fragment. Hitherto unknown occurrences of late Mesoproterozoic and middle Neoproterozoic granitoids from the south-central cordilleran segment define magmatic events at 691 +/- 13 Ma, 751 +/- 8 Ma, 985 +/- 14 Ma, and 1071-1123 +/- 23 Ma that are broadly coeval with the Braziliano and Grenville-Sunsas orogenies, respectively. Our data suggest the existence of a continuous orogenic belt in excess of 3500 km along Western Amazonia during the formation of Rodinia, its ``early'' fragmentation prior to 690 Ma, and support a model of reaccretion of the Paracas-Arequipa-Antofalla terrane to western Gondwana in the Early Ordovician with subsequent detachment of the Paracas segment in form of the Mexican Oaxaquia microcontinent in Middle Ordovician. A tectonomagmatic model involving slab detachment, followed by underplating of cratonic margin by asthenospheric mantle is proposed for the genesis of the volumetrically dominant Late Paleozoic to early Mesozoic Peruvian Cordilleran batholiths.
Resumo:
The microtubule-associated protein MAP2 is essential for development of early neuronal morphology and maintenance of adult neuronal morphology. Several splice variants exist, MAP2a-d, with a lack of MAP2a in cat brain. MAP2 is widely used as a neuronal marker. In this study we compared five monoclonal antibodies (MAbs) against MAP2. They show differences in the immunocytochemical distribution of MAP2 isoforms during development of the visual cortex and cerebellum of the cat. Local and temporal differences were seen with MAb AP18, an antibody directed against a phosphorylation-dependent epitope near the N-terminal end. In large pyramidal dendrites in visual cortex, the AP18 epitope remained in parts immunoreactive after treatment with alkaline phosphatase. Three MAbs, AP14, MT-01, and MT-02, recognized the central region of the MAP2b molecule, which is not present in MAP2c and 2d, and reacted with phosphorylation-independent epitopes. During the first postnatal week the immunostaining in cerebellum differed between antibodies in that some cellular elements in external and internal granular layers and Purkinje cells were stained to various degrees, whereas at later stages staining patterns were similar. At early stages, antibody MT-02 stained cell bodies and dendrites in cerebral cortex and cerebellum. With progressing maturation, immunoreactivity became restricted to distal parts of apical dendrites of pyramidal cells and was absent from perikarya and finer proximal dendrites in cortex. MT-02 did not stain MAP2 in cerebellum of adult animals. This study demonstrates that the immunocytochemical detection of MAP2 depends on modifications such as phosphorylation and conformational changes of the molecule, and that MAP2 staining patterns differ between MAbs. Phosphorylation and specific conformations in the molecule may be essential for modulating function and molecular stability of MAP2, and monoclonal antibodies against such sites may provide tools for studying the functional role of modifications.