37 resultados para scanning tunnelling microscopy
Resumo:
OBJECTIVE: To assess porcine urothelial cell cultures and the in vitro induction of urothelial stratification in long-term cultures, to study their morphological, functional and genetic behaviour, and thus provide potential autologous urothelium for tissue-engineered substitutes for demucosalized gastric or colonic tissue. MATERIALS AND METHODS: Primary cultures of porcine urothelium were established and the cells passaged thereafter. Cell specificity was confirmed by cytokeratin analysis, cell membrane stability assessed using lactate dehydrogenase leakage, cell de-differentiation by gamma-glutamyl transferase activity and genomic stability by karyotype investigations. Histology and scanning electron microscopy were performed to study the cultured cells and the stratified constructs. Furthermore, collagen matrices were tested as cell scaffolds. RESULTS: The cells were cultured for 180 days; 10 subcultures were established during this period. Stratification was induced in a culture flask and on a collagen matrix. Cytokeratins 7, 8, 17 and 18 were expressed in all cultures, and cell membranes were stable, with no evident de-differentiation. The cultures were stable in their genotype and no chromosomal aberrations were found. The histology and immunohistochemistry of the stratified porcine constructs, and cell membrane stability and cell de-differentiation, were compared with those in the human system. CONCLUSION: Pig and human urothelial cells can be cultured over a long period with no signs of senescence. Urothelial stratification can be induced in vitro. The collagen matrix seems to be an excellent scaffold, allowing cell adherence and growth.
Resumo:
BACKGROUND and OBJECTIVE: A non-touch laser-induced microdrilling procedure is studied on mouse zona pellucida (ZP). STUDY DESIGN/MATERIALS and METHODS: A 1.48-microns diode laser beam is focused in a 8-microns spot through a 45x objective of an inverted microscope. Mouse zygotes, suspended in a culture medium, are microdrilled by exposing their ZP to a short laser irradiation and allowed to develop in vitro. RESULTS: Various sharp-edged holes can be generated in the ZP with a single laser irradiation. Sizes can be varied by changing irradiation time (3-100 ms) or laser power (22-55 mW). Drilled zygotes present no signs of thermal damage under light and scanning electron microscopy and develop as expected in vitro, except for a distinct eight-shaped hatching behavior. CONCLUSION: The microdrilling procedure can generate standardized holes in mouse ZP, without any visible side effects. The hole formation can be explained by a local photothermolysis of the protein matrix.
Resumo:
Recently it was reported that, at autopsy, in neuropathologically confirmed cases of Alzheimer's disease spirochaetes were found in blood and cerebrospinal fluid using dark-field microscopy. Moreover, the spirochaetes were isolated and cultured from brain tissue. We now show, using scanning electron microscopy and atomic force microscopy that the helically shaped microorganisms isolated and cultured from the Alzheimer brains possess axial filaments. This indicates that these microorganisms taxonomically indeed belong to the order Spirochaetales. A morphometric analysis reinforces this notion.
Resumo:
INTRODUCTION: Calcium-containing (CaC) crystals, including basic calcium phosphate (BCP) and calcium pyrophosphate dihydrate (CPP), are associated with destructive forms of osteoarthritis (OA). We assessed their distribution and biochemical and morphologic features in human knee OA cartilage. METHODS: We prospectively included 20 patients who underwent total knee replacement (TKR) for primary OA. CaC crystal characterization and identification involved Fourier-transform infra-red spectrometry and scanning electron microscopy of 8 to 10 cartilage zones of each knee, including medial and lateral femoral condyles and tibial plateaux and the intercondyle zone. Differential expression of genes involved in the mineralization process between cartilage with and without calcification was assessed in samples from 8 different patients by RT-PCR. Immunohistochemistry and histology studies were performed in 6 different patients. RESULTS: Mean (SEM) age and body mass index of patients at the time of TKR was 74.6 (1.7) years and 28.1 (1.6) kg/m², respectively. Preoperative X-rays showed joint calcifications (chondrocalcinosis) in 4 cases only. The medial femoro-tibial compartment was the most severely affected in all cases, and mean (SEM) Kellgren-Lawrence score was 3.8 (0.1). All 20 OA cartilages showed CaC crystals. The mineral content represented 7.7% (8.1%) of the cartilage weight. All patients showed BCP crystals, which were associated with CPP crystals for 8 joints. CaC crystals were present in all knee joint compartments and in a mean of 4.6 (1.7) of the 8 studied areas. Crystal content was similar between superficial and deep layers and between medial and femoral compartments. BCP samples showed spherical structures, typical of biological apatite, and CPP samples showed rod-shaped or cubic structures. The expression of several genes involved in mineralization, including human homolog of progressive ankylosis, plasma-cell-membrane glycoprotein 1 and tissue-nonspecific alkaline phosphatase, was upregulated in OA chondrocytes isolated from CaC crystal-containing cartilages. CONCLUSIONS: CaC crystal deposition is a widespread phenomenon in human OA articular cartilage involving the entire knee cartilage including macroscopically normal and less weight-bearing zones. Cartilage calcification is associated with altered expression of genes involved in the mineralisation process.
Resumo:
Well developed experimental procedures currently exist for retrieving and analyzing particle evidence from hands of individuals suspected of being associated with the discharge of a firearm. Although analytical approaches (e.g. automated Scanning Electron Microscopy with Energy Dispersive X-ray (SEM-EDS) microanalysis) allow the determination of the presence of elements typically found in gunshot residue (GSR) particles, such analyses provide no information about a given particle's actual source. Possible origins for which scientists may need to account for are a primary exposure to the discharge of a firearm or a secondary transfer due to a contaminated environment. In order to approach such sources of uncertainty in the context of evidential assessment, this paper studies the construction and practical implementation of graphical probability models (i.e. Bayesian networks). These can assist forensic scientists in making the issue tractable within a probabilistic perspective. The proposed models focus on likelihood ratio calculations at various levels of detail as well as case pre-assessment.
Resumo:
We have explored the threshold of tolerance of three unrelated cell types to treatments with potential cytoprotective peptides bound to Tat(48-57) and Antp(43-58) cell-permeable peptide carriers. Both Tat(48-57) and Antp(43-58) are well known for their good efficacy at crossing membranes of different cell types, their overall low toxicity, and their absence of leakage once internalised. Here, we show that concentrations of up to 100 microM of Tat(48-57) were essentially harmless in all cells tested, whereas Antp(43-58) was significantly more toxic. Moreover, all peptides bound to Tat(48-57) and Antp(43-58) triggered significant and length-dependent cytotoxicity when used at concentrations above 10 microM in all but one cell types (208F rat fibroblasts), irrespective of the sequence of the cargo. Absence of cytotoxicity in 208F fibroblasts correlated with poor intracellular peptide uptake, as monitored by confocal laser scanning fluorescence microscopy. Our data further suggest that the onset of cytotoxicity correlates with the activation of two intracellular stress signalling pathways, namely those involving JNK, and to a lesser extent p38 mitogen-activated protein kinases. These responses are of particular concern for cells that are especially sensitive to the activation of stress kinases. Collectively, these results indicate that in order to avoid unwanted and unspecific cytotoxicity, effector molecules bound to Tat(48-57) should be designed with the shortest possible sequence and the highest possible affinity for their binding partners or targets, so that concentrations below 10 microM can be successfully applied to cells without harm. Considering that cytotoxicity associated to Tat(48-57)- and Antp(43-58) bound peptide conjugates was not restricted to a particular type of cells, our data provide a general framework for the design of cell-penetrating peptides that may apply to broader uses of intracellular peptide and drug delivery.
Resumo:
Complications related to the neck-stem junction of modular stems used for total hip arthroplasty (THA) are generating increasing concern. A 74-year-old male had increasing pain and a cutaneous reaction around the scar 1 year after THA with a modular neck-stem. Imaging revealed osteolysis of the calcar and a pseudo-tumour adjacent to the neck-stem junction. Serum cobalt levels were elevated. Revision surgery to exchange the stem and liner and to resect the pseudo-tumour was performed. Analysis of the stem by scanning electron microscopy and by energy dispersive X-ray and white light interferometry showed fretting corrosion at the neck-stem junction contrasting with minimal changes at the head-neck junction. Thus, despite dry assembly of the neck and stem on the back table at primary THA, full neck-stem contact was not achieved, and the resulting micromotion at the interface led to fretting corrosion. This case highlights the mechanism of fretting corrosion at the neck-stem interface responsible for adverse local tissue reactions. Clinical and radiological follow-up is mandatory in patients with dual-modular stems.