77 resultados para physically based modeling
Resumo:
Most life science processes involve, at the atomic scale, recognition between two molecules. The prediction of such interactions at the molecular level, by so-called docking software, is a non-trivial task. Docking programs have a wide range of applications ranging from protein engineering to drug design. This article presents SwissDock, a web server dedicated to the docking of small molecules on target proteins. It is based on the EADock DSS engine, combined with setup scripts for curating common problems and for preparing both the target protein and the ligand input files. An efficient Ajax/HTML interface was designed and implemented so that scientists can easily submit dockings and retrieve the predicted complexes. For automated docking tasks, a programmatic SOAP interface has been set up and template programs can be downloaded in Perl, Python and PHP. The web site also provides an access to a database of manually curated complexes, based on the Ligand Protein Database. A wiki and a forum are available to the community to promote interactions between users. The SwissDock web site is available online at http://www.swissdock.ch. We believe it constitutes a step toward generalizing the use of docking tools beyond the traditional molecular modeling community.
Resumo:
Recent studies have pointed out a similarity between tectonics and slope tectonic-induced structures. Numerous studies have demonstrated that structures and fabrics previously interpreted as of purely geodynamical origin are instead the result of large slope deformation, and this led in the past to erroneous interpretations. Nevertheless, their limit seems not clearly defined, but it is somehow transitional. Some studies point out continuity between failures developing at surface with upper crust movements. In this contribution, the main studies which examine the link between rock structures and slope movements are reviewed. The aspects regarding model and scale of observation are discussed together with the role of pre-existing weaknesses in the rock mass. As slope failures can develop through progressive failure, structures and their changes in time and space can be recognized. Furthermore, recognition of the origin of these structures can help in avoiding misinterpretations of regional geology. This also suggests the importance of integrating different slope movement classifications based on distribution and pattern of deformation and the application of structural geology techniques. A structural geology approach in the landslide community is a tool that can greatly support the hazard quantification and related risks, because most of the physical parameters, which are used for landslide modeling, are derived from geotechnical tests or the emerging geophysical approaches.
Resumo:
Toxicity of chemical pollutants in aquatic environments is often addressed by assays that inquire reproductive inhibition of test microorganisms, such as algae or bacteria. Those tests, however, assess growth of populations as a whole via macroscopic methods such as culture turbidity or colony-forming units. Here we use flow cytometry to interrogate the fate of individual cells in low-density populations of the bacterium Pseudomonas fluorescens SV3 exposed or not under oligotrophic conditions to a number of common pollutants, some of which derive from oil contamination. Cells were stained at regular time intervals during the exposure assay with fluorescent dyes that detect membrane injury (i.e., live-dead assay). Reduction of population growth rates was observed upon toxicant insult and depended on the type of toxicant. Modeling and cell staining indicate that population growth rate decrease is a combined effect of an increased number of injured cells that may or may not multiply, and live cells dividing at normal growth rates. The oligotrophic assay concept presented here could be a useful complement for existing biomarker assays in compliance with new regulations on chemical effect studies or, more specifically, for judging recovery after exposure to fluctuating toxicant conditions.
Resumo:
In the context of the investigation of the use of automated fingerprint identification systems (AFIS) for the evaluation of fingerprint evidence, the current study presents investigations into the variability of scores from an AFIS system when fingermarks from a known donor are compared to fingerprints that are not from the same source. The ultimate goal is to propose a model, based on likelihood ratios, which allows the evaluation of mark-to-print comparisons. In particular, this model, through its use of AFIS technology, benefits from the possibility of using a large amount of data, as well as from an already built-in proximity measure, the AFIS score. More precisely, the numerator of the LR is obtained from scores issued from comparisons between impressions from the same source and showing the same minutia configuration. The denominator of the LR is obtained by extracting scores from comparisons of the questioned mark with a database of non-matching sources. This paper focuses solely on the assignment of the denominator of the LR. We refer to it by the generic term of between-finger variability. The issues addressed in this paper in relation to between-finger variability are the required sample size, the influence of the finger number and general pattern, as well as that of the number of minutiae included and their configuration on a given finger. Results show that reliable estimation of between-finger variability is feasible with 10,000 scores. These scores should come from the appropriate finger number/general pattern combination as defined by the mark. Furthermore, strategies of obtaining between-finger variability when these elements cannot be conclusively seen on the mark (and its position with respect to other marks for finger number) have been presented. These results immediately allow case-by-case estimation of the between-finger variability in an operational setting.
Resumo:
ABSTRACT: BACKGROUND: The prevalence of obesity has increased in societies of all socio-cultural backgrounds. To date, guidelines set forward to prevent obesity have universally emphasized optimal levels of physical activity. However there are few empirical data to support the assertion that low levels of energy expenditure in activity is a causal factor in the current obesity epidemic are very limited. METHODS: The Modeling the Epidemiologic Transition Study (METS) is a cohort study designed to assess the association between physical activity levels and relative weight, weight gain and diabetes and cardiovascular disease risk in five population-based samples at different stages of economic development. Twenty-five hundred young adults, ages 25-45, were enrolled in the study; 500 from sites in Ghana, South Africa, Seychelles, Jamaica and the United States. At baseline, physical activity levels were assessed using accelerometry and a questionnaire in all participants and by doubly labeled water in a subsample of 75 per site. We assessed dietary intake using two separate 24-h recalls, body composition using bioelectrical impedance analysis, and health history, social and economic indicators by questionnaire. Blood pressure was measured and blood samples collected for measurement of lipids, glucose, insulin and adipokines. Full examination including physical activity using accelerometry, anthropometric data and fasting glucose will take place at 12 and 24 months. The distribution of the main variables and the associations between physical activity, independent of energy intake, glucose metabolism and anthropometric measures will be assessed using cross-section and longitudinal analysis within and between sites. DISCUSSION: METS will provide insight on the relative contribution of physical activity and diet to excess weight, age-related weight gain and incident glucose impairment in five populations' samples of young adults at different stages of economic development. These data should be useful for the development of empirically-based public health policy aimed at the prevention of obesity and associated chronic diseases.
Resumo:
Initial topography and inherited structural discontinuities are known to play a dominant role in rock slope stability. Previous 2-D physical modeling results demonstrated that even if few preexisting fractures are activated/propagated during gravitational failure all of those heterogeneities had a great influence on mobilized volume and its kinematics. The question we address in the present study is to determine if such a result is also observed in 3-D. As in 2-D previous models we examine geologically stable model configuration, based upon the well documented landslide at Randa, Switzerland. The 3-D models consisted of a homogeneous material in which several fracture zones were introduced in order to study simplified but realistic configurations of discontinuities (e.g. based on natural example rather than a parametric study). Results showed that the type of gravitational failure (deep-seated landslide or sequential failure) and resulting slope morphology evolution are the result of the interplay of initial topography and inherited preexisting fractures (orientation and density). The three main results are i) the initial topography exerts a strong control on gravitational slope failure. Indeed in each tested configuration (even in the isotropic one without fractures) the model is affected by a rock slide, ii) the number of simulated fracture sets greatly influences the volume mobilized and its kinematics, and iii) the failure zone involved in the 1991 event is smaller than the results produced by the analog modeling. This failure may indicate that the zone mobilized in 1991 is potentially only a part of a larger deep-seated landslide and/or wider deep seated gravitational slope deformation.
Resumo:
Mountains and mountain societies provide a wide range of goods and services to humanity, but they are particularly sensitive to the effects of global environmental change. Thus, the definition of appropriate management regimes that maintain the multiple functions of mountain regions in a time of greatly changing climatic, economic, and societal drivers constitutes a significant challenge. Management decisions must be based on a sound understanding of the future dynamics of these systems. The present article reviews the elements required for an integrated effort to project the impacts of global change on mountain regions, and recommends tools that can be used at 3 scientific levels (essential, improved, and optimum). The proposed strategy is evaluated with respect to UNESCO's network of Mountain Biosphere Reserves (MBRs), with the intention of implementing it in other mountain regions as well. First, methods for generating scenarios of key drivers of global change are reviewed, including land use/land cover and climate change. This is followed by a brief review of the models available for projecting the impacts of these scenarios on (1) cryospheric systems, (2) ecosystem structure and diversity, and (3) ecosystem functions such as carbon and water relations. Finally, the cross-cutting role of remote sensing techniques is evaluated with respect to both monitoring and modeling efforts. We conclude that a broad range of techniques is available for both scenario generation and impact assessments, many of which can be implemented without much capacity building across many or even most MBRs. However, to foster implementation of the proposed strategy, further efforts are required to establish partnerships between scientists and resource managers in mountain areas.
Resumo:
Building a personalized model to describe the drug concentration inside the human body for each patient is highly important to the clinical practice and demanding to the modeling tools. Instead of using traditional explicit methods, in this paper we propose a machine learning approach to describe the relation between the drug concentration and patients' features. Machine learning has been largely applied to analyze data in various domains, but it is still new to personalized medicine, especially dose individualization. We focus mainly on the prediction of the drug concentrations as well as the analysis of different features' influence. Models are built based on Support Vector Machine and the prediction results are compared with the traditional analytical models.
Resumo:
The interpretation of the Wechsler Intelligence Scale for Children-Fourth Edition (WISC-IV) is based on a 4-factor model, which is only partially compatible with the mainstream Cattell-Horn-Carroll (CHC) model of intelligence measurement. The structure of cognitive batteries is frequently analyzed via exploratory factor analysis and/or confirmatory factor analysis. With classical confirmatory factor analysis, almost all crossloadings between latent variables and measures are fixed to zero in order to allow the model to be identified. However, inappropriate zero cross-loadings can contribute to poor model fit, distorted factors, and biased factor correlations; most important, they do not necessarily faithfully reflect theory. To deal with these methodological and theoretical limitations, we used a new statistical approach, Bayesian structural equation modeling (BSEM), among a sample of 249 French-speaking Swiss children (8-12 years). With BSEM, zero-fixed cross-loadings between latent variables and measures are replaced by approximate zeros, based on informative, small-variance priors. Results indicated that a direct hierarchical CHC-based model with 5 factors plus a general intelligence factor better represented the structure of the WISC-IV than did the 4-factor structure and the higher order models. Because a direct hierarchical CHC model was more adequate, it was concluded that the general factor should be considered as a breadth rather than a superordinate factor. Because it was possible for us to estimate the influence of each of the latent variables on the 15 subtest scores, BSEM allowed improvement of the understanding of the structure of intelligence tests and the clinical interpretation of the subtest scores.
Resumo:
The activation of the specific immune response against tumor cells is based on the recognition by the CD8+ Cytotoxic Τ Lymphocytes (CTL), of antigenic peptides (p) presented at the surface of the cell by the class I major histocompatibility complex (MHC). The ability of the so-called T-Cell Receptors (TCR) to discriminate between self and non-self peptides constitutes the most important specific control mechanism against infected cells. The TCR/pMHC interaction has been the subject of much attention in cancer therapy since the design of the adoptive transfer approach, in which Τ lymphocytes presenting an interesting response against tumor cells are extracted from the patient, expanded in vitro, and reinfused after immunodepletion, possibly leading to cancer regression. In the last decade, major progress has been achieved by the introduction of engineered lypmhocytes. In the meantime, the understanding of the molecular aspects of the TCRpMHC interaction has become essential to guide in vitro and in vivo studies. In 1996, the determination of the first structure of a TCRpMHC complex by X-ray crystallography revealed the molecular basis of the interaction. Since then, molecular modeling techniques have taken advantage of crystal structures to study the conformational space of the complex, and understand the specificity of the recognition of the pMHC by the TCR. In the meantime, experimental techniques used to determine the sequences of TCR that bind to a pMHC complex have been used intensively, leading to the collection of large repertoires of TCR sequences that are specific for a given pMHC. There is a growing need for computational approaches capable of predicting the molecular interactions that occur upon TCR/pMHC binding without relying on the time consuming resolution of a crystal structure. This work presents new approaches to analyze the molecular principles that govern the recognition of the pMHC by the TCR and the subsequent activation of the T-cell. We first introduce TCRep 3D, a new method to model and study the structural properties of TCR repertoires, based on homology and ab initio modeling. We discuss the methodology in details, and demonstrate that it outperforms state of the art modeling methods in predicting relevant TCR conformations. Two successful applications of TCRep 3D that supported experimental studies on TCR repertoires are presented. Second, we present a rigid body study of TCRpMHC complexes that gives a fair insight on the TCR approach towards pMHC. We show that the binding mode of the TCR is correctly described by long-distance interactions. Finally, the last section is dedicated to a detailed analysis of an experimental hydrogen exchange study, which suggests that some regions of the constant domain of the TCR are subject to conformational changes upon binding to the pMHC. We propose a hypothesis of the structural signaling of TCR molecules leading to the activation of the T-cell. It is based on the analysis of correlated motions in the TCRpMHC structure. - L'activation de la réponse immunitaire spécifique dirigée contre les cellules tumorales est basée sur la reconnaissance par les Lymphocytes Τ Cytotoxiques (CTL), d'un peptide antigénique (p) présenté à la suface de la cellule par le complexe majeur d'histocompatibilité de classe I (MHC). La capacité des récepteurs des lymphocytes (TCR) à distinguer les peptides endogènes des peptides étrangers constitue le mécanisme de contrôle le plus important dirigé contre les cellules infectées. L'interaction entre le TCR et le pMHC est le sujet de beaucoup d'attention dans la thérapie du cancer, depuis la conception de la méthode de transfer adoptif: les lymphocytes capables d'une réponse importante contre les cellules tumorales sont extraits du patient, amplifiés in vitro, et réintroduits après immunosuppression. Il peut en résulter une régression du cancer. Ces dix dernières années, d'importants progrès ont été réalisés grâce à l'introduction de lymphocytes modifiés par génie génétique. En parallèle, la compréhension du TCRpMHC au niveau moléculaire est donc devenue essentielle pour soutenir les études in vitro et in vivo. En 1996, l'obtention de la première structure du complexe TCRpMHC à l'aide de la cristallographie par rayons X a révélé les bases moléculaires de l'interaction. Depuis lors, les techniques de modélisation moléculaire ont exploité les structures expérimentales pour comprendre la spécificité de la reconnaissance du pMHC par le TCR. Dans le même temps, de nouvelles techniques expérimentales permettant de déterminer la séquence de TCR spécifiques envers un pMHC donné, ont été largement exploitées. Ainsi, d'importants répertoires de TCR sont devenus disponibles, et il est plus que jamais nécessaire de développer des approches informatiques capables de prédire les interactions moléculaires qui ont lieu lors de la liaison du TCR au pMHC, et ce sans dépendre systématiquement de la résolution d'une structure cristalline. Ce mémoire présente une nouvelle approche pour analyser les principes moléculaires régissant la reconnaissance du pMHC par le TCR, et l'activation du lymphocyte qui en résulte. Dans un premier temps, nous présentons TCRep 3D, une nouvelle méthode basée sur les modélisations par homologie et ab initio, pour l'étude de propriétés structurales des répertoires de TCR. Le procédé est discuté en détails et comparé à des approches standard. Nous démontrons ainsi que TCRep 3D est le plus performant pour prédire des conformations pertinentes du TCR. Deux applications à des études expérimentales des répertoires TCR sont ensuite présentées. Dans la seconde partie de ce travail nous présentons une étude de complexes TCRpMHC qui donne un aperçu intéressant du mécanisme d'approche du pMHC par le TCR. Finalement, la dernière section se concentre sur l'analyse détaillée d'une étude expérimentale basée sur les échanges deuterium/hydrogène, dont les résultats révèlent que certaines régions clés du domaine constant du TCR sont sujettes à un changement conformationnel lors de la liaison au pMHC. Nous proposons une hypothèse pour la signalisation structurelle des TCR, menant à l'activation du lymphocyte. Celle-ci est basée sur l'analyse des mouvements corrélés observés dans la structure du TCRpMHC.
Resumo:
AbstractText BACKGROUND: Profiling sperm DNA present on vaginal swabs taken from rape victims often contributes to identifying and incarcerating rapists. Large amounts of the victim's epithelial cells contaminate the sperm present on swabs, however, and complicate this process. The standard method for obtaining relatively pure sperm DNA from a vaginal swab is to digest the epithelial cells with Proteinase K in order to solubilize the victim's DNA, and to then physically separate the soluble DNA from the intact sperm by pelleting the sperm, removing the victim's fraction, and repeatedly washing the sperm pellet. An alternative approach that does not require washing steps is to digest with Proteinase K, pellet the sperm, remove the victim's fraction, and then digest the residual victim's DNA with a nuclease. METHODS: The nuclease approach has been commercialized in a product, the Erase Sperm Isolation Kit (PTC Labs, Columbia, MO, USA), and five crime laboratories have tested it on semen-spiked female buccal swabs in a direct comparison with their standard methods. Comparisons have also been performed on timed post-coital vaginal swabs and evidence collected from sexual assault cases. RESULTS: For the semen-spiked buccal swabs, Erase outperformed the standard methods in all five laboratories and in most cases was able to provide a clean male profile from buccal swabs spiked with only 1,500 sperm. The vaginal swabs taken after consensual sex and the evidence collected from rape victims showed a similar pattern of Erase providing superior profiles. CONCLUSIONS: In all samples tested, STR profiles of the male DNA fractions obtained with Erase were as good as or better than those obtained using the standard methods.
Resumo:
Protein-protein interactions encode the wiring diagram of cellular signaling pathways and their deregulations underlie a variety of diseases, such as cancer. Inhibiting protein-protein interactions with peptide derivatives is a promising way to develop new biological and therapeutic tools. Here, we develop a general framework to computationally handle hundreds of non-natural amino acid sidechains and predict the effect of inserting them into peptides or proteins. We first generate all structural files (pdb and mol2), as well as parameters and topologies for standard molecular mechanics software (CHARMM and Gromacs). Accurate predictions of rotamer probabilities are provided using a novel combined knowledge and physics based strategy. Non-natural sidechains are useful to increase peptide ligand binding affinity. Our results obtained on non-natural mutants of a BCL9 peptide targeting beta-catenin show very good correlation between predicted and experimental binding free-energies, indicating that such predictions can be used to design new inhibitors. Data generated in this work, as well as PyMOL and UCSF Chimera plug-ins for user-friendly visualization of non-natural sidechains, are all available at http://www.swisssidechain.ch. Our results enable researchers to rapidly and efficiently work with hundreds of non-natural sidechains.
Identification of optimal structural connectivity using functional connectivity and neural modeling.
Resumo:
The complex network dynamics that arise from the interaction of the brain's structural and functional architectures give rise to mental function. Theoretical models demonstrate that the structure-function relation is maximal when the global network dynamics operate at a critical point of state transition. In the present work, we used a dynamic mean-field neural model to fit empirical structural connectivity (SC) and functional connectivity (FC) data acquired in humans and macaques and developed a new iterative-fitting algorithm to optimize the SC matrix based on the FC matrix. A dramatic improvement of the fitting of the matrices was obtained with the addition of a small number of anatomical links, particularly cross-hemispheric connections, and reweighting of existing connections. We suggest that the notion of a critical working point, where the structure-function interplay is maximal, may provide a new way to link behavior and cognition, and a new perspective to understand recovery of function in clinical conditions.
Resumo:
Toxicokinetic modeling is a useful tool to describe or predict the behavior of a chemical agent in the human or animal organism. A general model based on four compartments was developed in a previous study in order to quantify the effect of human variability on a wide range of biological exposure indicators. The aim of this study was to adapt this existing general toxicokinetic model to three organic solvents, which were methyl ethyl ketone, 1-methoxy-2-propanol and 1,1,1,-trichloroethane, and to take into account sex differences. We assessed in a previous human volunteer study the impact of sex on different biomarkers of exposure corresponding to the three organic solvents mentioned above. Results from that study suggested that not only physiological differences between men and women but also differences due to sex hormones levels could influence the toxicokinetics of the solvents. In fact the use of hormonal contraceptive had an effect on the urinary levels of several biomarkers, suggesting that exogenous sex hormones could influence CYP2E1 enzyme activity. These experimental data were used to calibrate the toxicokinetic models developed in this study. Our results showed that it was possible to use an existing general toxicokinetic model for other compounds. In fact, most of the simulation results showed good agreement with the experimental data obtained for the studied solvents, with a percentage of model predictions that lies within the 95% confidence interval varying from 44.4 to 90%. Results pointed out that for same exposure conditions, men and women can show important differences in urinary levels of biological indicators of exposure. Moreover, when running the models by simulating industrial working conditions, these differences could even be more pronounced. In conclusion, a general and simple toxicokinetic model, adapted for three well known organic solvents, allowed us to show that metabolic parameters can have an important impact on the urinary levels of the corresponding biomarkers. These observations give evidence of an interindividual variablity, an aspect that should have its place in the approaches for setting limits of occupational exposure.
Resumo:
With the advancement of high-throughput sequencing and dramatic increase of available genetic data, statistical modeling has become an essential part in the field of molecular evolution. Statistical modeling results in many interesting discoveries in the field, from detection of highly conserved or diverse regions in a genome to phylogenetic inference of species evolutionary history Among different types of genome sequences, protein coding regions are particularly interesting due to their impact on proteins. The building blocks of proteins, i.e. amino acids, are coded by triples of nucleotides, known as codons. Accordingly, studying the evolution of codons leads to fundamental understanding of how proteins function and evolve. The current codon models can be classified into three principal groups: mechanistic codon models, empirical codon models and hybrid ones. The mechanistic models grasp particular attention due to clarity of their underlying biological assumptions and parameters. However, they suffer from simplified assumptions that are required to overcome the burden of computational complexity. The main assumptions applied to the current mechanistic codon models are (a) double and triple substitutions of nucleotides within codons are negligible, (b) there is no mutation variation among nucleotides of a single codon and (c) assuming HKY nucleotide model is sufficient to capture essence of transition- transversion rates at nucleotide level. In this thesis, I develop a framework of mechanistic codon models, named KCM-based model family framework, based on holding or relaxing the mentioned assumptions. Accordingly, eight different models are proposed from eight combinations of holding or relaxing the assumptions from the simplest one that holds all the assumptions to the most general one that relaxes all of them. The models derived from the proposed framework allow me to investigate the biological plausibility of the three simplified assumptions on real data sets as well as finding the best model that is aligned with the underlying characteristics of the data sets. -- Avec l'avancement de séquençage à haut débit et l'augmentation dramatique des données géné¬tiques disponibles, la modélisation statistique est devenue un élément essentiel dans le domaine dé l'évolution moléculaire. Les résultats de la modélisation statistique dans de nombreuses découvertes intéressantes dans le domaine de la détection, de régions hautement conservées ou diverses dans un génome de l'inférence phylogénétique des espèces histoire évolutive. Parmi les différents types de séquences du génome, les régions codantes de protéines sont particulièrement intéressants en raison de leur impact sur les protéines. Les blocs de construction des protéines, à savoir les acides aminés, sont codés par des triplets de nucléotides, appelés codons. Par conséquent, l'étude de l'évolution des codons mène à la compréhension fondamentale de la façon dont les protéines fonctionnent et évoluent. Les modèles de codons actuels peuvent être classés en trois groupes principaux : les modèles de codons mécanistes, les modèles de codons empiriques et les hybrides. Les modèles mécanistes saisir une attention particulière en raison de la clarté de leurs hypothèses et les paramètres biologiques sous-jacents. Cependant, ils souffrent d'hypothèses simplificatrices qui permettent de surmonter le fardeau de la complexité des calculs. Les principales hypothèses retenues pour les modèles actuels de codons mécanistes sont : a) substitutions doubles et triples de nucleotides dans les codons sont négligeables, b) il n'y a pas de variation de la mutation chez les nucléotides d'un codon unique, et c) en supposant modèle nucléotidique HKY est suffisant pour capturer l'essence de taux de transition transversion au niveau nucléotidique. Dans cette thèse, je poursuis deux objectifs principaux. Le premier objectif est de développer un cadre de modèles de codons mécanistes, nommé cadre KCM-based model family, sur la base de la détention ou de l'assouplissement des hypothèses mentionnées. En conséquence, huit modèles différents sont proposés à partir de huit combinaisons de la détention ou l'assouplissement des hypothèses de la plus simple qui détient toutes les hypothèses à la plus générale qui détend tous. Les modèles dérivés du cadre proposé nous permettent d'enquêter sur la plausibilité biologique des trois hypothèses simplificatrices sur des données réelles ainsi que de trouver le meilleur modèle qui est aligné avec les caractéristiques sous-jacentes des jeux de données. Nos expériences montrent que, dans aucun des jeux de données réelles, tenant les trois hypothèses mentionnées est réaliste. Cela signifie en utilisant des modèles simples qui détiennent ces hypothèses peuvent être trompeuses et les résultats de l'estimation inexacte des paramètres. Le deuxième objectif est de développer un modèle mécaniste de codon généralisée qui détend les trois hypothèses simplificatrices, tandis que d'informatique efficace, en utilisant une opération de matrice appelée produit de Kronecker. Nos expériences montrent que sur un jeux de données choisis au hasard, le modèle proposé de codon mécaniste généralisée surpasse autre modèle de codon par rapport à AICc métrique dans environ la moitié des ensembles de données. En outre, je montre à travers plusieurs expériences que le modèle général proposé est biologiquement plausible.