176 resultados para paired associate learning


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This review article summarizes evidence that multisensory experiences at one point in time have long-lasting effects on subsequent unisensory visual and auditory object recognition. The efficacy of single-trial exposure to task-irrelevant multisensory events is its ability to modulate memory performance and brain activity to unisensory components of these events presented later in time. Object recognition (either visual or auditory) is enhanced if the initial multisensory experience had been semantically congruent and can be impaired if this multisensory pairing was either semantically incongruent or entailed meaningless information in the task-irrelevant modality, when compared to objects encountered exclusively in a unisensory context. Processes active during encoding cannot straightforwardly explain these effects; performance on all initial presentations was indistinguishable despite leading to opposing effects with stimulus repetitions. Brain responses to unisensory stimulus repetitions differ during early processing stages (-100 ms post-stimulus onset) according to whether or not they had been initially paired in a multisensory context. Plus, the network exhibiting differential responses varies according to whether or not memory performance is enhanced or impaired. The collective findings we review indicate that multisensory associations formed via single-trial learning exert influences on later unisensory processing to promote distinct object representations that manifest as differentiable brain networks whose activity is correlated with memory performance. These influences occur incidentally, despite many intervening stimuli, and are distinguishable from the encoding/learning processes during the formation of the multisensory associations. The consequences of multisensory interactions that persist over time to impact memory retrieval and object discrimination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper presents an approach for mapping of precipitation data. The main goal is to perform spatial predictions and simulations of precipitation fields using geostatistical methods (ordinary kriging, kriging with external drift) as well as machine learning algorithms (neural networks). More practically, the objective is to reproduce simultaneously both the spatial patterns and the extreme values. This objective is best reached by models integrating geostatistics and machine learning algorithms. To demonstrate how such models work, two case studies have been considered: first, a 2-day accumulation of heavy precipitation and second, a 6-day accumulation of extreme orographic precipitation. The first example is used to compare the performance of two optimization algorithms (conjugate gradients and Levenberg-Marquardt) of a neural network for the reproduction of extreme values. Hybrid models, which combine geostatistical and machine learning algorithms, are also treated in this context. The second dataset is used to analyze the contribution of radar Doppler imagery when used as external drift or as input in the models (kriging with external drift and neural networks). Model assessment is carried out by comparing independent validation errors as well as analyzing data patterns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In an uncertain environment, probabilities are key to predicting future events and making adaptive choices. However, little is known about how humans learn such probabilities and where and how they are encoded in the brain, especially when they concern more than two outcomes. During functional magnetic resonance imaging (fMRI), young adults learned the probabilities of uncertain stimuli through repetitive sampling. Stimuli represented payoffs and participants had to predict their occurrence to maximize their earnings. Choices indicated loss and risk aversion but unbiased estimation of probabilities. BOLD response in medial prefrontal cortex and angular gyri increased linearly with the probability of the currently observed stimulus, untainted by its value. Connectivity analyses during rest and task revealed that these regions belonged to the default mode network. The activation of past outcomes in memory is evoked as a possible mechanism to explain the engagement of the default mode network in probability learning. A BOLD response relating to value was detected only at decision time, mainly in striatum. It is concluded that activity in inferior parietal and medial prefrontal cortex reflects the amount of evidence accumulated in favor of competing and uncertain outcomes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An active learning method is proposed for the semi-automatic selection of training sets in remote sensing image classification. The method adds iteratively to the current training set the unlabeled pixels for which the prediction of an ensemble of classifiers based on bagged training sets show maximum entropy. This way, the algorithm selects the pixels that are the most uncertain and that will improve the model if added in the training set. The user is asked to label such pixels at each iteration. Experiments using support vector machines (SVM) on an 8 classes QuickBird image show the excellent performances of the methods, that equals accuracies of both a model trained with ten times more pixels and a model whose training set has been built using a state-of-the-art SVM specific active learning method

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Cognitive impairment affects 40-65% of multiple sclerosis (MS) patients, often since early stages of the disease (relapsing remitting MS, RRMS). Frequently affected functions are memory, attention or executive abilities but the most sensitive measure of cognitive deficits in early MS is the information processing speed (Amato, 2008). MRI has been extensively exploited to investigate the substrate of cognitive dysfunction in MS but the underlying physiopathological mechanisms remain unclear. White matter lesion load, whole-brain atrophy and cortical lesions' number play a role but correlations are in some cases modest (Rovaris, 2006; Calabrese, 2009). In this study, we aimed at characterizing and correlating the T1 relaxation times of cortical and sub-cortical lesions with cognitive deficits detected by neuropsychological tests in a group of very early RR MS patients. Methods: Ten female patients with very early RRMS (age: 31.6 ±4.7y; disease duration: 3.8 ±1.9y; EDSS disability score: 1.8 ±0.4) and 10 age- and gender-matched healthy volunteers (mean age: 31.2 ±5.8y) were included in the study. All participants underwent the following neuropsychological tests: Rao's Brief Repeatable Battery of Neuropsychological tests (BRB-N), Stockings of Cambridge, Trail Making Test (TMT, part A and B), Boston Naming Test, Hooper Visual Organization Test and copy of the Rey-Osterrieth Complex Figure. Within 2 weeks from neuropsychological assessment, participants underwent brain MRI at 3T (Magnetom Trio a Tim System, Siemens, Germany) using a 32-channel head coil. The imaging protocol included 3D sequences with 1x1x1.2 mm3 resolution and 256x256x160 matrix, except for axial 2D-FLAIR: -DIR (T2-weighted, suppressing both WM and CSF; Pouwels, 2006) -MPRAGE (T1-weighted; Mugler, 1991) -MP2RAGE (T1-weighted with T1 maps; Marques, 2010) -FLAIR SPACE (only for patient 4-10, T2-weighted; Mugler, 2001) -2D Axial FLAIR (0.9x0.9x2.5 mm3, 256x256x44 matrix). Lesions were identified by one experienced neurologist and radiologist using all contrasts, manually contoured and assigned to regional locations (cortical or sub-cortical). Lesion number, volume and T1 relaxation time were calculated for lesions in each contrast and in a merged mask representing the union of the lesions from all contrasts. T1 relaxation times of lesions were normalized with the mean T1 value in corresponding control regions of the healthy subjects. Statistical analysis was performed using GraphPad InStat software. Cognitive scores were compared between patients and controls with paired t-tests; p values ≤ 0.05 were considered significant. Spearmann correlation tests were performed between the cognitive tests, which differed significantly between patients and controls, and lesions' i) number ii) volume iii) T1 relaxation time iv) disease duration and v) years of study. Results: Cortical and sub-cortical lesions count, T1 values and volume are reported in Table 1 (A and B). All early RRMS patients showed cortical lesions (CLs) and the majority consisted of CLs type I (lesions with a cortical component extending to the sub-cortical tissue). The rest of cortical lesions were characterized as type II (intra-cortical lesions). No type III/IV lesions (large sub-pial lesions) were detected. RRMS patients were slightly less educated (13.5±2.5y vs. 16.3±1.8y of study, p=0.02) than the controls. Signs of cortical dysfunction (i.e. impaired learning, language, visuo-spatial skills or gnosis) were rare in all patients. However, patients showed on average lower scores on measures of visual attention and information processing speed (TMT-part A: p=0.01; TMT-part B: p=0.006; PASAT-included in the BRB-N: p=0.04). The T1 relaxation values of CLs type I negatively correlated with the TMT-part A score (r=0.78, p<0.01). The correlations of TMT-part B score and PASAT score with T1 relaxation time of lesions as well and the correlation between TMT-part A, TMT-part B and PASAT score with lesions' i) number ii) volume iii) disease duration and iv) years of study did not reach significance. In order to preclude possible influences from partial volume effects on the T1 values, the correlation between lesion volume and T1 value of CLs type I was calculated; no correlation was found, suggesting that partial volume effects did not affect the statistics. Conclusions: The present pilot study reports for the first time the presence and the T1 characteristics at 3 T of cortical lesions in very early RRMS (< 6 y disease duration). It also shows that CLS type I represents the most frequent cortical lesion type in this cohort of RRMS patients. In addition, it reveals a negative correlation between the attentional test TMT-part A and the T1 properties of cortical lesions type I. In other words, lower attention deficits are concomitant with longer T1-relaxation time in cortical lesions. In respect to this last finding, it could be speculated that long relaxation time correspond to a certain degree of tissue loss that is enough to stimulate compensatory mechanisms. This hypothesis is in line with previous fMRI studies showing functional compensatory mechanisms to help maintaining normal or sub-normal attention performances in RR MS patients (Penner, 2003).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents general problems and approaches for the spatial data analysis using machine learning algorithms. Machine learning is a very powerful approach to adaptive data analysis, modelling and visualisation. The key feature of the machine learning algorithms is that they learn from empirical data and can be used in cases when the modelled environmental phenomena are hidden, nonlinear, noisy and highly variable in space and in time. Most of the machines learning algorithms are universal and adaptive modelling tools developed to solve basic problems of learning from data: classification/pattern recognition, regression/mapping and probability density modelling. In the present report some of the widely used machine learning algorithms, namely artificial neural networks (ANN) of different architectures and Support Vector Machines (SVM), are adapted to the problems of the analysis and modelling of geo-spatial data. Machine learning algorithms have an important advantage over traditional models of spatial statistics when problems are considered in a high dimensional geo-feature spaces, when the dimension of space exceeds 5. Such features are usually generated, for example, from digital elevation models, remote sensing images, etc. An important extension of models concerns considering of real space constrains like geomorphology, networks, and other natural structures. Recent developments in semi-supervised learning can improve modelling of environmental phenomena taking into account on geo-manifolds. An important part of the study deals with the analysis of relevant variables and models' inputs. This problem is approached by using different feature selection/feature extraction nonlinear tools. To demonstrate the application of machine learning algorithms several interesting case studies are considered: digital soil mapping using SVM, automatic mapping of soil and water system pollution using ANN; natural hazards risk analysis (avalanches, landslides), assessments of renewable resources (wind fields) with SVM and ANN models, etc. The dimensionality of spaces considered varies from 2 to more than 30. Figures 1, 2, 3 demonstrate some results of the studies and their outputs. Finally, the results of environmental mapping are discussed and compared with traditional models of geostatistics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: A form of education called Interprofessional Education (IPE) occurs when two or more professions learn with, from and about each other. The purpose of IPE is to improve collaboration and the quality of care. Today, IPE is considered as a key educational approach for students in the health professions. IPE is highly effective when delivered in active patient care, such as in clinical placements. General internal medicine (GIM) is a core discipline where hospital-based clinical placements are mandatory for students in many health professions. However, few interprofessional (IP) clinical placements in GIM have been implemented. We designed such a placement. Placement design: The placement took place in the Department of Internal Medicine at the CHUV. It involved students from nursing, physiotherapy and medicine. The students were in their last year before graduation. Students formed teams consisting of one student from each profession. Each team worked in the same unit and had to take care of the same patient. The placement lasted three weeks. It included formal IP sessions, the most important being facilitated discussions or "briefings" (3x/w) during which the students discussed patient care and management. Four teams of students eventually took part in this project. Method: We performed a type of evaluation research called formative evaluation. This aimed at (1) understanding the educational experience and (2) assessing the impact of the placement on student learning. We collected quantitative data with pre-post clerkship questionnaires. We also collected qualitative data with two Focus Groups (FG) discussions at the end of the placement. The FG were audiotaped and transcribed. A thematic analysis was then performed. Results: We focused on the qualitative data, since the quantitative data lacked of statistical power due to the small numbers of students (N = 11). Five themes emerged from the FG analysis: (1) Learning of others' roles, (2) Learning collaborative competences, (3) Striking a balance between acquiring one's own professional competences and interprofessional competences, (4) Barriers to apply learnt IP competences in the future and (5) Advantages and disadvantages of IP briefings. Conclusions: Our IP clinical placement in GIM appeared to help students learn other professionals' roles and collaborative skills. Some challenges (e.g. finding the same patient for each team) were identified and will require adjustments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most theories of perception assume a rigid relationship between objects of the physical world and the corresponding mental representations. We show by a priori reasoning that this assumption is not fulfilled. We claim instead that all object-representation correspondences have to be learned. However, we cannot learn to perceive all objects that there are in the world. We arrive at these conclusions by a combinatory analysis of a fictive stimulus world and the way to cope with its complexity, which is perceptual learning. We show that successful perceptual learning requires changes in the representational states of the brain that are not derived directly from the constitution of the physical world. The mind constitutes itself through perceptual learning.

Relevância:

20.00% 20.00%

Publicador: