34 resultados para opportunity


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Aim The aim of this study was to determine the number of successful establishments of the invasive Argentine ant outside native range and to see whether introduced supercolonies have resulted from single or multiple introductions. We also compared the genetic diversity of native versus introduced supercolonies to assess the size of the propagules (i.e. the number of founding individuals) at the origin of the introduced supercolonies. Location Global. Methods We used mitochondrial DNA (mtDNA) markers and microsatellite loci to study 39 supercolonies of the Argentine ant Linepithema humile covering both the native (n = 25) and introduced range (n = 14). Results Data from three mitochondrial genes and 13 nuclear microsatellites suggest that the introduced supercolonies studied originated from at least seven founding events out of the native area in Argentina (primary introductions). The distribution of mtDNA haplotypes also suggests that supercolonies in the introduced range each derive from a single source supercolony and that one of these source supercolonies has been particularly successful, being the basis of many introduced populations spread across the world. Comparison of the genetic diversity of supercolonies based on the five most diverse loci also revealed that native and introduced supercolonies have greatly overlapping ranges of diversity, although the genetic diversity is on average less in introduced than in native supercolonies. Main conclusions Both primary introductions (from the native range) and secondary introductions (from sites with established invasive supercolonies) were important in the global expansion of the Argentine ant. In combination with the similar social organization of colonies in the native and introduced range, this indicates that invasiveness did not evolve recently as a unique and historically contingent event (e.g. reduction of genetic diversity) in this species. Rather, native L. humile supercolonies have characteristics that make them pre-adapted to invade new - and in particular disturbed - habitats when given the opportunity. These results have important implications with regard to possible strategies to be used to control invasive ants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Energy metabolism measurements in spinal cord tumors, as well as in osseous spinal tumors/metastasis in vivo, are rarely performed only with molecular imaging (MI) by positron emission tomography (PET). This imaging modality developed from a small number of basic clinical science investigations followed by subsequent work that influenced and enhanced the research of others. Apart from precise anatomical localization by coregistration of morphological imaging and quantification, the most intriguing advantage of this imaging is the opportunity to investigate the time course (dynamics) of disease-specific molecular events in the intact organism. Most importantly, MI represents one of the key technologies in translational molecular neuroscience research, helping to develop experimental protocols that may later be applied to human patients. PET may help monitor a patient at the vertebral level after surgery and during adjuvant treatment for recurrent or progressive disease. Common clinical indications for MI of primary or secondary CNS spinal tumors are: (i) tumor diagnosis, (ii) identification of the metabolically active tumor compartments (differentiation of viable tumor tissue from necrosis) and (iii) prediction of treatment response by measurement of tumor perfusion or ischemia. While spinal PET has been used under specific circumstances, a question remains as to whether the magnitude of biochemical alterations observed by MI in CNS tumors in general (specifically spinal tumors) can reveal any prognostic value with respect to survival. MI may be able to better identify early disease and to differentiate benign from malignant lesions than more traditional methods. Moreover, an adequate identification of treatment effectiveness may influence patient management. MI probes could be developed to image the function of targets without disturbing them or as treatment to modify the target's function. MI therefore closes the gap between in vitro and in vivo integrative biology of disease. At the spinal level, MI may help to detect progression or recurrence of metastatic disease after surgical treatment. In cases of nonsurgical treatments such as chemo-, hormone- or radiotherapy, it may better assess biological efficiency than conventional imaging modalities coupled with blood tumor markers. In fact, PET provides a unique possibility to correlate topography and specific metabolic activity, but it requires additional clinical and experimental experience and research to find new indications for primary or secondary spinal tumors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Adequate pain assessment is critical for evaluating the efficacy of analgesic treatment in clinical practice and during the development of new therapies. Yet the currently used scores of global pain intensity fail to reflect the diversity of pain manifestations and the complexity of underlying biological mechanisms. We have developed a tool for a standardized assessment of pain-related symptoms and signs that differentiates pain phenotypes independent of etiology. METHODS AND FINDINGS: Using a structured interview (16 questions) and a standardized bedside examination (23 tests), we prospectively assessed symptoms and signs in 130 patients with peripheral neuropathic pain caused by diabetic polyneuropathy, postherpetic neuralgia, or radicular low back pain (LBP), and in 57 patients with non-neuropathic (axial) LBP. A hierarchical cluster analysis revealed distinct association patterns of symptoms and signs (pain subtypes) that characterized six subgroups of patients with neuropathic pain and two subgroups of patients with non-neuropathic pain. Using a classification tree analysis, we identified the most discriminatory assessment items for the identification of pain subtypes. We combined these six interview questions and ten physical tests in a pain assessment tool that we named Standardized Evaluation of Pain (StEP). We validated StEP for the distinction between radicular and axial LBP in an independent group of 137 patients. StEP identified patients with radicular pain with high sensitivity (92%; 95% confidence interval [CI] 83%-97%) and specificity (97%; 95% CI 89%-100%). The diagnostic accuracy of StEP exceeded that of a dedicated screening tool for neuropathic pain and spinal magnetic resonance imaging. In addition, we were able to reproduce subtypes of radicular and axial LBP, underscoring the utility of StEP for discerning distinct constellations of symptoms and signs. CONCLUSIONS: We present a novel method of identifying pain subtypes that we believe reflect underlying pain mechanisms. We demonstrate that this new approach to pain assessment helps separate radicular from axial back pain. Beyond diagnostic utility, a standardized differentiation of pain subtypes that is independent of disease etiology may offer a unique opportunity to improve targeted analgesic treatment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study of sex allocation in social Hymenoptera (ants, bees, and wasps) provides an excellent opportunity for testing kin-selection theory and studying conflict resolution. A queen-worker conflict over sex allocation is expected because workers are more related to sisters than to brothers, whereas queens are equally related to daughters and sons. If workers fully control sex allocation, split sex ratio theory predicts that colonies with relatively high or low relatedness asymmetry (the relatedness of workers to females divided by the relatedness of workers to males) should specialize in females or males, respectively. We performed a meta-analysis to assess the magnitude of adaptive sex allocation biasing by workers and degree of support for split sex ratio theory in the social Hymenoptera. Overall, variation in relatedness asymmetry (due to mate number or queen replacement) and variation in queen number (which also affects relatedness asymmetry in some conditions) explained 20.9% and 5% of the variance in sex allocation among colonies, respectively. These results show that workers often bias colony sex allocation in their favor as predicted by split sex ratio theory, even if their control is incomplete and a large part of the variation among colonies has other causes. The explanatory power of split sex ratio theory was close to that of local mate competition and local resource competition in the few species of social Hymenoptera where these factors apply. Hence, three of the most successful theories explaining quantitative variation in sex allocation are based on kin selection.