86 resultados para nonlinear least-square fit
Resumo:
The metabolic equivalent (MET) is a widely used physiological concept that represents a simple procedure for expressing energy cost of physical activities as multiples of resting metabolic rate (RMR). The value equating 1 MET (3.5 ml O2 x kg(-1) x min(-1) or 1 kcal x kg(-1) x h(-1)) was first derived from the resting O2 consumption (VO2) of one person, a 70-kg, 40-yr-old man. Given the extensive use of MET levels to quantify physical activity level or work output, we investigated the adequacy of this scientific convention. Subjects consisted of 642 women and 127 men, 18-74 yr of age, 35-186 kg in weight, who were weight stable and healthy, albeit obese in some cases. RMR was measured by indirect calorimetry using a ventilated hood system, and the energy cost of walking on a treadmill at 5.6 km/h was measured in a subsample of 49 men and 49 women (26-45 kg/m2; 29-47 yr). Average VO2 and energy cost corresponding with rest (2.6 +/- 0.4 ml O2 x kg(-1) x min(-1) and 0.84 +/- 0.16 kcal x kg(-1) x h(-1), respectively) were significantly lower than the commonly accepted 1-MET values of 3.5 ml O2 x kg(-1) x min(-1) and 1 kcal x kg(-1) x h(-1), respectively. Body composition (fat mass and fat-free mass) accounted for 62% of the variance in resting VO2 compared with age, which accounted for only 14%. For a large heterogeneous sample, the 1-MET value of 3.5 ml O2 x kg(-1) x min(-1) overestimates the actual resting VO2 value on average by 35%, and the 1-MET of 1 kcal/h overestimates resting energy expenditure by 20%. Using measured or predicted RMR (ml O2 x kg(-1) x min(-1) or kcal x kg(-1) x h(-1)) as a correction factor can appropriately adjust for individual differences when estimating the energy cost of moderate intensity walking (5.6 km/h).
Resumo:
The analysis of multi-modal and multi-sensor images is nowadays of paramount importance for Earth Observation (EO) applications. There exist a variety of methods that aim at fusing the different sources of information to obtain a compact representation of such datasets. However, for change detection existing methods are often unable to deal with heterogeneous image sources and very few consider possible nonlinearities in the data. Additionally, the availability of labeled information is very limited in change detection applications. For these reasons, we present the use of a semi-supervised kernel-based feature extraction technique. It incorporates a manifold regularization accounting for the geometric distribution and jointly addressing the small sample problem. An exhaustive example using Landsat 5 data illustrates the potential of the method for multi-sensor change detection.
Resumo:
AbstractFor a wide range of environmental, hydrological, and engineering applications there is a fast growing need for high-resolution imaging. In this context, waveform tomographic imaging of crosshole georadar data is a powerful method able to provide images of pertinent electrical properties in near-surface environments with unprecedented spatial resolution. In contrast, conventional ray-based tomographic methods, which consider only a very limited part of the recorded signal (first-arrival traveltimes and maximum first-cycle amplitudes), suffer from inherent limitations in resolution and may prove to be inadequate in complex environments. For a typical crosshole georadar survey the potential improvement in resolution when using waveform-based approaches instead of ray-based approaches is in the range of one order-of- magnitude. Moreover, the spatial resolution of waveform-based inversions is comparable to that of common logging methods. While in exploration seismology waveform tomographic imaging has become well established over the past two decades, it is comparably still underdeveloped in the georadar domain despite corresponding needs. Recently, different groups have presented finite-difference time-domain waveform inversion schemes for crosshole georadar data, which are adaptations and extensions of Tarantola's seminal nonlinear generalized least-squares approach developed for the seismic case. First applications of these new crosshole georadar waveform inversion schemes on synthetic and field data have shown promising results. However, there is little known about the limits and performance of such schemes in complex environments. To this end, the general motivation of my thesis is the evaluation of the robustness and limitations of waveform inversion algorithms for crosshole georadar data in order to apply such schemes to a wide range of real world problems.One crucial issue to making applicable and effective any waveform scheme to real-world crosshole georadar problems is the accurate estimation of the source wavelet, which is unknown in reality. Waveform inversion schemes for crosshole georadar data require forward simulations of the wavefield in order to iteratively solve the inverse problem. Therefore, accurate knowledge of the source wavelet is critically important for successful application of such schemes. Relatively small differences in the estimated source wavelet shape can lead to large differences in the resulting tomograms. In the first part of my thesis, I explore the viability and robustness of a relatively simple iterative deconvolution technique that incorporates the estimation of the source wavelet into the waveform inversion procedure rather than adding additional model parameters into the inversion problem. Extensive tests indicate that this source wavelet estimation technique is simple yet effective, and is able to provide remarkably accurate and robust estimates of the source wavelet in the presence of strong heterogeneity in both the dielectric permittivity and electrical conductivity as well as significant ambient noise in the recorded data. Furthermore, our tests also indicate that the approach is insensitive to the phase characteristics of the starting wavelet, which is not the case when directly incorporating the wavelet estimation into the inverse problem.Another critical issue with crosshole georadar waveform inversion schemes which clearly needs to be investigated is the consequence of the common assumption of frequency- independent electromagnetic constitutive parameters. This is crucial since in reality, these parameters are known to be frequency-dependent and complex and thus recorded georadar data may show significant dispersive behaviour. In particular, in the presence of water, there is a wide body of evidence showing that the dielectric permittivity can be significantly frequency dependent over the GPR frequency range, due to a variety of relaxation processes. The second part of my thesis is therefore dedicated to the evaluation of the reconstruction limits of a non-dispersive crosshole georadar waveform inversion scheme in the presence of varying degrees of dielectric dispersion. I show that the inversion algorithm, combined with the iterative deconvolution-based source wavelet estimation procedure that is partially able to account for the frequency-dependent effects through an "effective" wavelet, performs remarkably well in weakly to moderately dispersive environments and has the ability to provide adequate tomographic reconstructions.
Resumo:
OBJECTIVE: To develop a provisional definition for the evaluation of response to therapy in juvenile dermatomyositis (DM) based on the Paediatric Rheumatology International Trials Organisation juvenile DM core set of variables. METHODS: Thirty-seven experienced pediatric rheumatologists from 27 countries achieved consensus on 128 difficult patient profiles as clinically improved or not improved using a stepwise approach (patient's rating, statistical analysis, definition selection). Using the physicians' consensus ratings as the "gold standard measure," chi-square, sensitivity, specificity, false-positive and-negative rates, area under the receiver operating characteristic curve, and kappa agreement for candidate definitions of improvement were calculated. Definitions with kappa values >0.8 were multiplied by the face validity score to select the top definitions. RESULTS: The top definition of improvement was at least 20% improvement from baseline in 3 of 6 core set variables with no more than 1 of the remaining worsening by more than 30%, which cannot be muscle strength. The second-highest scoring definition was at least 20% improvement from baseline in 3 of 6 core set variables with no more than 2 of the remaining worsening by more than 25%, which cannot be muscle strength (definition P1 selected by the International Myositis Assessment and Clinical Studies group). The third is similar to the second with the maximum amount of worsening set to 30%. This indicates convergent validity of the process. CONCLUSION: We propose a provisional data-driven definition of improvement that reflects well the consensus rating of experienced clinicians, which incorporates clinically meaningful change in core set variables in a composite end point for the evaluation of global response to therapy in juvenile DM.
Resumo:
The root-colonizing Pseudomonas fluorescens strain CHA0 is a biocontrol agent of soil-borne plant diseases caused by fungal and oomycete pathogens. Remarkably, this plant-beneficial pseudomonad is also endowed with potent insecticidal activity that depends on the production of a large protein toxin termed Fit (for P. fluorescens insecticidal toxin). In our present work, the genomic locus encoding the P. fluorescens insect toxin is subjected to a detailed molecular analysis. The Fit toxin gene fitD is flanked upstream by the fitABC genes and downstream by the fitE gene that encode the ABC transporter, membrane fusion, and outer membrane efflux components of a type I protein secretion system predicted to function in toxin export. The fitF, fitG, and fitH genes located downstream of fitE code for regulatory proteins having domain structures typical of signal transduction histidine kinases, LysR-type transcriptional regulators, and response regulators, respectively. The role of these insect toxin locus-associated control elements is being investigated with mutants defective for the regulatory genes and with GFP-based reporter fusions to putative promoter regions upstream of the transporter genes fitA and fitE, the toxin gene fitD, and the regulatory genes fitF and fitH. Our preliminary findings suggest that the three regulators interact with known global regulators of biocontrol factor expression to control Fit toxin expression and secretion.
Resumo:
One aspect of person-job fit reflects congruence between personal preferences and job design; as congruence increases so should satisfaction. We hypothesized that power distance would moderate whether fit is related to satisfaction with degree of job formalization. We obtained measures of job-formalization, fit and satisfaction, as well as organizational commitment from employees (n = 772) in a multinational firm with subsidiaries in six countries. Confirming previous findings, individuals from low power-distance cultures were most satisfied with increasing fit. However, the extent to which individuals from high power-distance cultures were satisfied did not necessarily depend on increasing fit, but mostly on whether the degree of formalization received was congruent to cultural norms. Irrespective of culture, satisfaction with formalization predicted a broad measure of organizational commitment. Apart from our novel extension of fit theory, we show how moderation can be tested in the context of polynomial response surface regression and how specific hypotheses can be tested regarding different points on the response surface.
Resumo:
In Switzerland, the issue of land consumption has made it to the front of the political agenda in recent years. Studies conducted on a national level have concluded that there is an excess of land zoned for construction (ARE, 2008), which is seen as contributing to urban sprawl. This situation is looked upon as a failure of the Federal Law on Spatial Planning (LAT, 1979) and there is a political push to change it in order to reinforce zoning regulations. In this article, we look on the issue from a different angle. While there may be large quantities of land zoned for construction, in many urban areas land actually available for development is scarce. Building on the idea that planning's efficiency is linked to its capacity of influencing actual land-use, we focus on how this situation can be dealt with within the current Swiss institutional context.
Resumo:
PURPOSE: The prognostic impact of complete response (CR) achievement in multiple myeloma (MM) has been shown mostly in the context of autologous stem-cell transplantation. Other levels of response have been defined because, even with high-dose therapy, CR is a relatively rare event. The purpose of this study was to analyze the prognostic impact of very good partial response (VGPR) in patients treated with high-dose therapy. PATIENTS AND METHODS: All patients were included in the Intergroupe Francophone du Myelome 99-02 and 99-04 trials and treated with vincristine, doxorubicin, and dexamethasone (VAD) induction therapy followed by double autologous stem-cell transplantation (ASCT). Best post-ASCT response assessment was available for 802 patients. RESULTS: With a median follow-up of 67 months, median event-free survival (EFS) and 5-year EFS were 42 months and 34%, respectively, for 405 patients who achieved at least VGPR after ASCT versus 32 months and 26% in 288 patients who achieved only partial remission (P = .005). Five-year overall survival (OS) was significantly superior in patients achieving at least VGPR (74% v 61% P = .0017). In multivariate analysis, achievement of less than VGPR was an independent factor predicting shorter EFS and OS. Response to VAD had no impact on EFS and OS. The impact of VGPR achievement on EFS and OS was significant in patients with International Staging System stages 2 to 3 and for patients with poor-risk cytogenetics t(4;14) or del(17p). CONCLUSION: In the context of ASCT, achievement of at least VGPR is a simple prognostic factor that has importance in intermediate and high-risk MM and can be informative in more patients than CR.
Resumo:
In recent years there has been an explosive growth in the development of adaptive and data driven methods. One of the efficient and data-driven approaches is based on statistical learning theory (Vapnik 1998). The theory is based on Structural Risk Minimisation (SRM) principle and has a solid statistical background. When applying SRM we are trying not only to reduce training error ? to fit the available data with a model, but also to reduce the complexity of the model and to reduce generalisation error. Many nonlinear learning procedures recently developed in neural networks and statistics can be understood and interpreted in terms of the structural risk minimisation inductive principle. A recent methodology based on SRM is called Support Vector Machines (SVM). At present SLT is still under intensive development and SVM find new areas of application (www.kernel-machines.org). SVM develop robust and non linear data models with excellent generalisation abilities that is very important both for monitoring and forecasting. SVM are extremely good when input space is high dimensional and training data set i not big enough to develop corresponding nonlinear model. Moreover, SVM use only support vectors to derive decision boundaries. It opens a way to sampling optimization, estimation of noise in data, quantification of data redundancy etc. Presentation of SVM for spatially distributed data is given in (Kanevski and Maignan 2004).
Resumo:
The aim of the study was to assess the effects of physical fitness on the relationships between body mass index (BMI) and body fat (BF) on blood pressure (BP) levels. Cross-sectional study conducted in 25 schools of Lisbon (Portugal), including 2041 boys and 1995 girls aged 10-18. BF was assessed by bioimpedance. Cardiovascular fitness was assessed by the 20-meter shuttle run and classified as fit/unfit. Obesity (BMI or BF defined) was defined according to international criteria. In both sexes, BMI was positively related with systolic and diastolic BP, while BF was only positively related with diastolic BP z-scores. No interaction was found between fitness and BMI categories regarding BP levels, while for BF a significant interaction was found. Being fit reduced the BF-induced increase in the Odds ratio (OR) of presenting with high BP: OR (95% confidence interval) 1.01 (0.73-1.40) and 0.99 (0.70-1.38) for overweight and obese fit boys, respectively, the corresponding values for unfit overweight and obese boys being 1.33 (0.94-1.90) and 1.75 (1.34-2.28), respectively. The values were 0.88 (0.57-1.35) and 1.66 (0.98-2.80) for overweight and obese fit girls, respectively, the corresponding values for unfit overweight and obese being 1.63 (1.12-2.37) and 1.90 (1.32-2.73) respectively. No interaction was found between fitness and BMI-defined overweight and obesity. Being fit reduces the negative impact of BF on BP levels and high BP status in adolescents. This protective effect was not found with BMI.
Resumo:
The application of plant-beneficial pseudomonads provides a promising alternative to chemical pest management in agriculture. The fact that Pseudomonas fluorescens CHA0 and Pf-5, both well-known biocontrol agents of fungal root diseases, exhibit also potent insecticidal activity is of particular interest, as these plant-beneficial bacteria naturally colonize the rhizosphere of important crop plants. Insecticidal activity in these strains depends on a novel locus encoding the production of a protein toxin termed Fit (for P. fluorescens insecticidal toxin). To gain a better understanding of the ecological relevance of the Pseudomonas anti-insect activity, we have begun to investigate the occurrence and molecular diversity of the Fit toxin genes among root-associated pseudomonads. To this end, we have screened a large world-wide collection of fluorescent Pseudomonas sp. isolated from the roots of different plant species using molecular fingerprinting techniques. The strains are already well characterized for exoproduct patterns and disease-suppressive ability and are currently being tested for insecticidal activity in a greater wax moth larvae assay system.
Resumo:
An epidemic model is formulated by a reactionâeuro"diffusion system where the spatial pattern formation is driven by cross-diffusion. The reaction terms describe the local dynamics of susceptible and infected species, whereas the diffusion terms account for the spatial distribution dynamics. For both self-diffusion and cross-diffusion, nonlinear constitutive assumptions are suggested. To simulate the pattern formation two finite volume formulations are proposed, which employ a conservative and a non-conservative discretization, respectively. An efficient simulation is obtained by a fully adaptive multiresolution strategy. Numerical examples illustrate the impact of the cross-diffusion on the pattern formation.
Resumo:
The OLS estimator of the intergenerational earnings correlation is biased towards zero, while the instrumental variables estimator is biased upwards. The first of these results arises because of measurement error, while the latter rests on the presumption that the education of the parent family is an invalid instrument. We propose a panel data framework for quantifying the asymptotic biases of these estimators, as well as a mis-specification test for the IV estimator. [Author]