43 resultados para nonlinear errors


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Individuals with depression process information in an overly negative or biased way (e.g., Henriques & Leitenberg, 2002) and demonstrate significant interpersonal dysfunction (e.g., Zlotnick, Kohn, Keitner, & Della Grotta, 2000). This study examined the relationship between cognitive errors (CEs) and interpersonal interactions in early psychotherapy sessions of 25 female patients with major depression. Transcripts were rated for CEs using the Cognitive Error Rating Scale (Drapeau, Perry, & Dunkley, 2008). Interpersonal patterns were assessed using the Structural Analysis of Social Behavior (Benjamin, 1974). Significant associations were found between CEs and markers of interpersonal functioning in selected contexts. The implications of these findings in bridging the gap between research and practice, enhancing treatment outcome, and improving therapist training are discussed. (PsycINFO Database Record (c) 2012 APA, all rights reserved).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: Video records are widely used to analyze performance in alpine skiing at professional or amateur level. Parts of these analyses require the labeling of some movements (i.e. determining when specific events occur). If differences among coaches and differences for the same coach between different dates are expected, they have never been quantified. Moreover, knowing these differences is essential to determine which parameters reliable should be used. This study aimed to quantify the precision and the repeatability for alpine skiing coaches of various levels, as it is done in other fields (Koo et al, 2005). METHODS: A software similar to commercialized products was designed to allow video analyses. 15 coaches divided into 3 groups (5 amateur coaches (G1), 5 professional instructors (G2) and 5 semi-professional coaches (G3)) were enrolled. They were asked to label 15 timing parameters (TP) according to the Swiss ski manual (Terribilini et al, 2001) for each curve. TP included phases (initiation, steering I-II), body and ski movements (e.g. rotation, weighting, extension, balance). Three video sequences sampled at 25 Hz were used and one curve per video was labeled. The first video was used to familiarize the analyzer to the software. The two other videos, corresponding to slalom and giant slalom, were considered for the analysis. G1 realized twice the analysis (A1 and A2) at different dates and TP were randomized between both analyses. Reference TP were considered as the median of G2 and G3 at A1. The precision was defined as the RMS difference between individual TP and reference TP, whereas the repeatability was calculated as the RMS difference between individual TP at A1 and at A2. RESULTS AND DISCUSSION: For G1, G2 and G3, a precision of +/-5.6 frames, +/-3.0 and +/-2.0 frames, was respectively obtained. These results showed that G2 was more precise than G1, and G3 more precise than G2, were in accordance with group levels. The repeatability for G1 was +/-3.1 frames. Furthermore, differences among TP precision were observed, considering G2 and G3, with largest differences of +/-5.9 frames for "body counter rotation movement in steering phase II", and of 0.8 frame for "ski unweighting in initiation phase". CONCLUSION: This study quantified coach ability to label video in term of precision and repeatability. The best precision was obtained for G3 and was of +/-0.08s, which corresponds to +/-6.5% of the curve cycle. Regarding the repeatability, we obtained a result of +/-0.12s for G1, corresponding to +/-12% of the curve cycle. The repeatability of G2 and G3 are expected to be lower than the precision of G1 and the corresponding repeatability will be assessed soon. In conclusion, our results indicate that the labeling of video records is reliable for some TP, whereas caution is required for others. REFERENCES Koo S, Gold MD, Andriacchi TP. (2005). Osteoarthritis, 13, 782-789. Terribilini M, et al. (2001). Swiss Ski manual, 29-46. IASS, Lucerne.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rhythmic activity plays a central role in neural computations and brain functions ranging from homeostasis to attention, as well as in neurological and neuropsychiatric disorders. Despite this pervasiveness, little is known about the mechanisms whereby the frequency and power of oscillatory activity are modulated, and how they reflect the inputs received by neurons. Numerous studies have reported input-dependent fluctuations in peak frequency and power (as well as couplings across these features). However, it remains unresolved what mediates these spectral shifts among neural populations. Extending previous findings regarding stochastic nonlinear systems and experimental observations, we provide analytical insights regarding oscillatory responses of neural populations to stimulation from either endogenous or exogenous origins. Using a deceptively simple yet sparse and randomly connected network of neurons, we show how spiking inputs can reliably modulate the peak frequency and power expressed by synchronous neural populations without any changes in circuitry. Our results reveal that a generic, non-nonlinear and input-induced mechanism can robustly mediate these spectral fluctuations, and thus provide a framework in which inputs to the neurons bidirectionally regulate both the frequency and power expressed by synchronous populations. Theoretical and computational analysis of the ensuing spectral fluctuations was found to reflect the underlying dynamics of the input stimuli driving the neurons. Our results provide insights regarding a generic mechanism supporting spectral transitions observed across cortical networks and spanning multiple frequency bands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aimed to use the plantar pressure insole for estimating the three-dimensional ground reaction force (GRF) as well as the frictional torque (T(F)) during walking. Eleven subjects, six healthy and five patients with ankle disease participated in the study while wearing pressure insoles during several walking trials on a force-plate. The plantar pressure distribution was analyzed and 10 principal components of 24 regional pressure values with the stance time percentage (STP) were considered for GRF and T(F) estimation. Both linear and non-linear approximators were used for estimating the GRF and T(F) based on two learning strategies using intra-subject and inter-subjects data. The RMS error and the correlation coefficient between the approximators and the actual patterns obtained from force-plate were calculated. Our results showed better performance for non-linear approximation especially when the STP was considered as input. The least errors were observed for vertical force (4%) and anterior-posterior force (7.3%), while the medial-lateral force (11.3%) and frictional torque (14.7%) had higher errors. The result obtained for the patients showed higher error; nevertheless, when the data of the same patient were used for learning, the results were improved and in general slight differences with healthy subjects were observed. In conclusion, this study showed that ambulatory pressure insole with data normalization, an optimal choice of inputs and a well-trained nonlinear mapping function can estimate efficiently the three-dimensional ground reaction force and frictional torque in consecutive gait cycle without requiring a force-plate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spatial data analysis mapping and visualization is of great importance in various fields: environment, pollution, natural hazards and risks, epidemiology, spatial econometrics, etc. A basic task of spatial mapping is to make predictions based on some empirical data (measurements). A number of state-of-the-art methods can be used for the task: deterministic interpolations, methods of geostatistics: the family of kriging estimators (Deutsch and Journel, 1997), machine learning algorithms such as artificial neural networks (ANN) of different architectures, hybrid ANN-geostatistics models (Kanevski and Maignan, 2004; Kanevski et al., 1996), etc. All the methods mentioned above can be used for solving the problem of spatial data mapping. Environmental empirical data are always contaminated/corrupted by noise, and often with noise of unknown nature. That's one of the reasons why deterministic models can be inconsistent, since they treat the measurements as values of some unknown function that should be interpolated. Kriging estimators treat the measurements as the realization of some spatial randomn process. To obtain the estimation with kriging one has to model the spatial structure of the data: spatial correlation function or (semi-)variogram. This task can be complicated if there is not sufficient number of measurements and variogram is sensitive to outliers and extremes. ANN is a powerful tool, but it also suffers from the number of reasons. of a special type ? multiplayer perceptrons ? are often used as a detrending tool in hybrid (ANN+geostatistics) models (Kanevski and Maignank, 2004). Therefore, development and adaptation of the method that would be nonlinear and robust to noise in measurements, would deal with the small empirical datasets and which has solid mathematical background is of great importance. The present paper deals with such model, based on Statistical Learning Theory (SLT) - Support Vector Regression. SLT is a general mathematical framework devoted to the problem of estimation of the dependencies from empirical data (Hastie et al, 2004; Vapnik, 1998). SLT models for classification - Support Vector Machines - have shown good results on different machine learning tasks. The results of SVM classification of spatial data are also promising (Kanevski et al, 2002). The properties of SVM for regression - Support Vector Regression (SVR) are less studied. First results of the application of SVR for spatial mapping of physical quantities were obtained by the authorsin for mapping of medium porosity (Kanevski et al, 1999), and for mapping of radioactively contaminated territories (Kanevski and Canu, 2000). The present paper is devoted to further understanding of the properties of SVR model for spatial data analysis and mapping. Detailed description of the SVR theory can be found in (Cristianini and Shawe-Taylor, 2000; Smola, 1996) and basic equations for the nonlinear modeling are given in section 2. Section 3 discusses the application of SVR for spatial data mapping on the real case study - soil pollution by Cs137 radionuclide. Section 4 discusses the properties of the modelapplied to noised data or data with outliers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the general regression neural networks (GRNN) as a nonlinear regression method for the interpolation of monthly wind speeds in complex Alpine orography. GRNN is trained using data coming from Swiss meteorological networks to learn the statistical relationship between topographic features and wind speed. The terrain convexity, slope and exposure are considered by extracting features from the digital elevation model at different spatial scales using specialised convolution filters. A database of gridded monthly wind speeds is then constructed by applying GRNN in prediction mode during the period 1968-2008. This study demonstrates that using topographic features as inputs in GRNN significantly reduces cross-validation errors with respect to low-dimensional models integrating only geographical coordinates and terrain height for the interpolation of wind speed. The spatial predictability of wind speed is found to be lower in summer than in winter due to more complex and weaker wind-topography relationships. The relevance of these relationships is studied using an adaptive version of the GRNN algorithm which allows to select the useful terrain features by eliminating the noisy ones. This research provides a framework for extending the low-dimensional interpolation models to high-dimensional spaces by integrating additional features accounting for the topographic conditions at multiple spatial scales. Copyright (c) 2012 Royal Meteorological Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a system where tens of thousands of words are made up of a limited number of phonemes, many words are bound to sound alike. This similarity of the words in the lexicon as characterized by phonological neighbourhood density (PhND) has been shown to affect speed and accuracy of word comprehension and production. Whereas there is a consensus about the interfering nature of neighbourhood effects in comprehension, the language production literature offers a more contradictory picture with mainly facilitatory but also interfering effects reported on word production. Here we report both of these two types of effects in the same study. Multiple regression mixed models analyses were conducted on PhND effects on errors produced in a naming task by a group of 21 participants with aphasia. These participants produced more formal errors (interfering effect) for words in dense phonological neighbourhoods, but produced fewer nonwords and semantic errors (a facilitatory effect) with increasing density. In order to investigate the nature of these opposite effects of PhND, we further analysed a subset of formal errors and nonword errors by distinguishing errors differing on a single phoneme from the target (corresponding to the definition of phonological neighbours) from those differing on two or more phonemes. This analysis confirmed that only formal errors that were phonological neighbours of the target increased in dense neighbourhoods, while all other errors decreased. Based on additional observations favouring a lexical origin of these formal errors (they exceeded the probability of producing a real-word error by chance, were of a higher frequency, and preserved the grammatical category of the targets), we suggest that the interfering effect of PhND is due to competition between lexical neighbours and target words in dense neighbourhoods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study is an empirical analysis of the impact of direct tax revenue budgeting errors on fiscal deficits. Using panel data from 26 Swiss cantons between 1980 and 2002, we estimate a single equation model on the fiscal balance, as well as a simultaneous equation model on revenue and expenditure. We use new data on budgeted and actual tax revenue to show that underestimating tax revenue significantly reduces fiscal deficits. Furthermore, we show that this effect is channeled through decreased expenditure. The effects of over and underestimation turn out to be symmetric.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Probabilistic inversion methods based on Markov chain Monte Carlo (MCMC) simulation are well suited to quantify parameter and model uncertainty of nonlinear inverse problems. Yet, application of such methods to CPU-intensive forward models can be a daunting task, particularly if the parameter space is high dimensional. Here, we present a 2-D pixel-based MCMC inversion of plane-wave electromagnetic (EM) data. Using synthetic data, we investigate how model parameter uncertainty depends on model structure constraints using different norms of the likelihood function and the model constraints, and study the added benefits of joint inversion of EM and electrical resistivity tomography (ERT) data. Our results demonstrate that model structure constraints are necessary to stabilize the MCMC inversion results of a highly discretized model. These constraints decrease model parameter uncertainty and facilitate model interpretation. A drawback is that these constraints may lead to posterior distributions that do not fully include the true underlying model, because some of its features exhibit a low sensitivity to the EM data, and hence are difficult to resolve. This problem can be partly mitigated if the plane-wave EM data is augmented with ERT observations. The hierarchical Bayesian inverse formulation introduced and used herein is able to successfully recover the probabilistic properties of the measurement data errors and a model regularization weight. Application of the proposed inversion methodology to field data from an aquifer demonstrates that the posterior mean model realization is very similar to that derived from a deterministic inversion with similar model constraints.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Les erreurs innées du métabolisme (EIM) sont dues à des mutations de gènes codant pour des enzymes du métabolisme et sont classées selon trois grands groupes de maladies: 1) intoxications; 2) déficit énergétique et 3) déficit de synthèse ou catabolisme des maladies complexes. Le progrès thérapeutique des vingt dernières années a permis d'améliorer le pronostic des enfants atteints d'EIM. Ces enfants grandissent et doivent être pris en charge à l'adolescence et à l'âge adulte par des équipes spécialisées. Cette médecine métabolique pour adultes est une discipline relativement nouvelle avec une information limitée chez l'adulte. Les recommandations pédiatriques sont extrapolées à la prise en charge des adultes tout en intégrant les différentes étapes de vie (indépendance sociale, grossesse, vieillissement et éventuelles complications tardives). Inborn errors of metabolism (IEM) are due to mutations of genes coding for enzymes of intermediary metabolism and are classified into 3 broad categories: 1) intoxication, 2) energy defect and 3) cellular organelles synthesis or catabolism defect. Improvements of therapy over these last 20 years has improved prognosis of children with IEM. These children grow up and should have their transition to specialized adult care. Adult patients with IEM are a relatively new phenomenon with currently only limited knowledge. Extrapolated pediatric guidelines are applied to the adult population taking into account adult life stages (social independence, pregnancy, aging process and potential long-term complications).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In humans, action errors and perceptual novelty elicit activity in a shared frontostriatal brain network, allowing them to adapt their ongoing behavior to such unexpected action outcomes. Healthy and pathologic aging reduces the integrity of white matter pathways that connect individual hubs of such networks and can impair the associated cognitive functions. Here, we investigated whether structural disconnection within this network because of small-vessel disease impairs the neural processes that subserve motor slowing after errors and novelty (post-error slowing, PES; post-novel slowing, PNS). Participants with intact frontostriatal circuitry showed increased right-lateralized beta-band (12-24 Hz) synchrony between frontocentral and frontolateral electrode sites in the electroencephalogram after errors and novelty, indexing increased neural communication. Importantly, this synchrony correlated with PES and PNS across participants. Furthermore, such synchrony was reduced in participants with frontostriatal white matter damage, in line with reduced PES and PNS. The results demonstrate that behavioral change after errors and novelty result from coordinated neural activity across a frontostriatal brain network and that such cognitive control is impaired by reduced white matter integrity.