57 resultados para multi-nucleated giant cell
Resumo:
Introduction: Mantle cell lymphoma (MCL) accounts for 6% of all B-cell lymphomas and remains incurable for most patients. Those who relapse after first line therapy or hematopoietic stem cell transplantation have a dismal prognosis with short response duration after salvage therapy. On a molecular level, MCL is characterised by the translocation t[11;14] leading to Cyclin D1 overexpression. Cyclin D1 is downstream of the mammalian target of rapamycin (mTOR) kinase and can be effectively blocked by mTOR inhibitors such as temsirolimus. We set out to define the single agent activity of the orally available mTOR inhibitor everolimus (RAD001) in a prospective, multi-centre trial in patients with relapsed or refractory MCL (NCT00516412). The study was performed in collaboration with the EU-MCL network. Methods: Eligible patients with histologically/cytologically confirmed relapsed (not more than 3 prior lines of systemic treatment) or refractory MCL received everolimus 10 mg orally daily on day 1 - 28 of each cycle (4 weeks) for 6 cycles or until disease progression. The primary endpoint was the best objective response with adverse reactions, time to progression (TTP), time to treatment failure, response duration and molecular response as secondary endpoints. A response rate of 10% was considered uninteresting and, conversely, promising if 30%. The required sample size was 35 pts using the Simon's optimal two-stage design with 90% power and 5% significance. Results: A total of 36 patients with 35 evaluable patients from 19 centers were enrolled between August 2007 and January 2010. The median age was 69.4 years (range 40.1 to 84.9 years), with 22 males and 13 females. Thirty patients presented with relapsed and 5 with refractory MCL with a median of two prior therapies. Treatment was generally well tolerated with anemia (11%), thrombocytopenia (11%), neutropenia (8%), diarrhea (3%) and fatigue (3%) being the most frequent complications of CTC grade III or higher. Eighteen patients received 6 or more cycles of everolimus treatment. The objective response rate was 20% (95% CI: 8-37%) with 2 CR, 5 PR, 17 SD, and 11 PD. At a median follow-up of 6 months, TTP was 5.45 months (95% CI: 2.8-8.2 months) for the entire population and 10.6 months for the 18 patients receiving 6 or more cycles of treatment. Conclusion: This study demonstrates that single agent everolimus 10 mg once daily orally is well tolerated. The null hypothesis of inactivity could be rejected indicating a moderate anti-lymphoma activity in relapsed/refractory MCL. Further studies of either everolimus in combination with chemotherapy or as single agent for maintenance treatment are warranted in MCL.
Resumo:
Introduction: Mantle cell lymphoma (MCL) accounts for 6% of all B-cell lymphomas and remains incurable for most patients. Those who relapse after first line therapy or hematopoietic stem cell transplantation have a dismal prognosis with short response duration after salvage therapy. On a molecular level, MCL is characterised by the translocation t[11;14] leading to Cyclin D1 overexpression. Cyclin D1 is downstream of the mammalian target of rapamycin (mTOR) kinase and can be effectively blocked by mTOR inhibitors such as temsirolimus. We set out to define the single agent activity of the orally available mTOR inhibitor everolimus (RAD001) in a prospective, multi-centre trial in patients with relapsed or refractory MCL (NCT00516412). The study was performed in collaboration with the EU-MCL network. Methods: Eligible patients with histologically/cytologically confirmed relapsed (not more than 3 prior lines of systemic treatment) or refractory MCL received everolimus 10 mg orally daily on day 1 - 28 of each cycle (4 weeks) for 6 cycles or until disease progression. The primary endpoint was the best objective response with adverse reactions, time to progression (TTP), time to treatment failure, response duration and molecular response as secondary endpoints. A response rate of ≤ 10% was considered uninteresting and, conversely, promising if ≥ 30%. The required sample size was 35 pts using the Simon's optimal two-stage design with 90% power and 5% significance. Results: A total of 36 patients with 35 evaluable patients from 19 centers were enrolled between August 2007 and January 2010. The median age was 69.4 years (range 40.1 to 84.9 years), with 22 males and 13 females. Thirty patients presented with relapsed and 5 with refractory MCL with a median of two prior therapies. Treatment was generally well tolerated with anemia (11%), thrombocytopenia (11%), neutropenia (8%), diarrhea (3%) and fatigue (3%) being the most frequent complications of CTC grade III or higher. Eighteen patients received 6 or more cycles of everolimus treatment. The objective response rate was 20% (95% CI: 8-37%) with 2 CR, 5 PR, 17 SD, and 11 PD. At a median follow-up of 6 months, TTP was 5.45 months (95% CI: 2.8-8.2 months) for the entire population and 10.6 months for the 18 patients receiving 6 or more cycles of treatment. Conclusion: This study demonstrates that single agent everolimus 10 mg once daily orally is well tolerated. The null hypothesis of inactivity could be rejected indicating a moderate anti-lymphoma activity in relapsed/refractory MCL. Further studies of either everolimus in combination with chemotherapy or as single agent for maintenance treatment are warranted in MCL.
Resumo:
The detection of multi-resistant bacterial pathogens, particularly those to carbapenemases, in leukemic and stem cell transplant patients forces the use of old or non-conventional agents as the only remaining treatment options. These include colistin/polymyxin B, tigecycline, fosfomycin and various anti-gram-positive agents. Data on the use of these agents in leukemic patients are scanty, with only linezolid subjected to formal trials. The Expert Group of the 4(th) European Conference on Infections in Leukemia has developed guidelines for their use in these patient populations. Targeted therapy should be based on (i) in vitro susceptibility data, (ii) knowledge of the best treatment option against the particular species or phenotype of bacteria, (iii) pharmacokinetic/pharmacodynamic data, and (iv) careful assessment of the risk-benefit balance. For infections due to resistant Gram-negative bacteria, these agents should be preferably used in combination with other agents that remain active in vitro, because of suboptimal efficacy (e.g., tigecycline) and the risk of emergent resistance (e.g., fosfomycin). The paucity of new antibacterial drugs in the near future should lead us to limit the use of these drugs to situations where no alternative exists.
Resumo:
Cell-cell fusion is essential for fertilization. For fusion of walled cells, the cell wall must be degraded at a precise location but maintained in surrounding regions to protect against lysis. In fission yeast cells, the formin Fus1, which nucleates linear actin filaments, is essential for this process. In this paper, we show that this formin organizes a specific actin structure-the actin fusion focus. Structured illumination microscopy and live-cell imaging of Fus1, actin, and type V myosins revealed an aster of actin filaments whose barbed ends are focalized near the plasma membrane. Focalization requires Fus1 and type V myosins and happens asynchronously always in the M cell first. Type V myosins are essential for fusion and concentrate cell wall hydrolases, but not cell wall synthases, at the fusion focus. Thus, the fusion focus focalizes cell wall dissolution within a broader cell wall synthesis zone to shift from cell growth to cell fusion.
Resumo:
OBJECTIVE: To evaluate the antitumor activity and safety profile of plitidepsin administered as a 1h weekly intravenous (i.v.) infusion of 3.2mg/m(2) to patients with small cell lung cancer (SCLC) who relapsed or progressed after one line of chemotherapy. PATIENTS AND METHODS: This was a multicenter, open-label, single-arm, exploratory, phase II clinical trial. Treatment lasted until disease progression, unacceptable toxicity, patient refusal or treatment delay for >2 weeks. Objective response rate (primary efficacy endpoint) was evaluated according to response evaluation criteria in solid tumors (RECIST). The rate of stable disease (SD) lasting for at least 6 months and time-to-event variables were secondary endpoints of efficacy. Toxicity was assessed using National Cancer Institute Common Toxicity Criteria (NCI-CTC) version 2.0. RESULTS: Twenty pretreated SCLC patients (median age, 60 years) with extensive (n=13) or limited-stage disease (n=7) received a total of 24 treatment cycles (median, one cycle per patient; range, 1-2). Objective tumor responses were not observed and only one of the 17 evaluable patients had SD. With a median follow-up of 11.8 months, the progression-free survival and the median overall survival were 1.3 months and 4.8 months, respectively. The most troubling or common toxicities were fatigue, muscle weakness, lymphopenia, anemia (no patients showed neutropenia), and asymptomatic, non-cumulative increase of transaminases levels and alkaline phosphatase. CONCLUSION: This clinical trial shows that a cycle of 1h weekly i.v. infusion of plitidepsin (3.2mg/m(2)) was generally well tolerated other than fatigue and muscle weakness in patients with pretreated SCLC. One patient died due to multi-organ failure. The absence of antitumor activity found here precludes further studies of this plitidepsin schedule as second-line single-agent treatment of SCLC.
Resumo:
The T-cell antigen receptor (TCR) exists in monomeric and nanoclustered forms independently of antigen binding. Although the clustering is involved in the regulation of T-cell sensitivity, it is unknown how the TCR nanoclusters form. We show that cholesterol is required for TCR nanoclustering in T cells and that this clustering enhances the avidity but not the affinity of the TCR-antigen interaction. Investigating the mechanism of the nanoclustering, we found that radioactive photocholesterol specifically binds to the TCRβ chain in vivo. In order to reduce the complexity of cellular membranes, we used a synthetic biology approach and reconstituted the TCR in liposomes of defined lipid composition. Both cholesterol and sphingomyelin were required for the formation of TCR dimers in phosphatidylcholine-containing large unilamellar vesicles. Further, the TCR was localized in the liquid disordered phase in giant unilamellar vesicles. We propose a model in which cholesterol and sphingomyelin binding to the TCRβ chain causes TCR dimerization. The lipid-induced TCR nanoclustering enhances the avidity to antigen and thus might be involved in enhanced sensitivity of memory compared with naive T cells. Our work contributes to the understanding of the function of specific nonannular lipid-membrane protein interactions.
Resumo:
Circulating levels of adiponectin, a hormone produced predominantly by adipocytes, are highly heritable and are inversely associated with type 2 diabetes mellitus (T2D) and other metabolic traits. We conducted a meta-analysis of genome-wide association studies in 39,883 individuals of European ancestry to identify genes associated with metabolic disease. We identified 8 novel loci associated with adiponectin levels and confirmed 2 previously reported loci (P = 4.5×10(-8)-1.2×10(-43)). Using a novel method to combine data across ethnicities (N = 4,232 African Americans, N = 1,776 Asians, and N = 29,347 Europeans), we identified two additional novel loci. Expression analyses of 436 human adipocyte samples revealed that mRNA levels of 18 genes at candidate regions were associated with adiponectin concentrations after accounting for multiple testing (p<3×10(-4)). We next developed a multi-SNP genotypic risk score to test the association of adiponectin decreasing risk alleles on metabolic traits and diseases using consortia-level meta-analytic data. This risk score was associated with increased risk of T2D (p = 4.3×10(-3), n = 22,044), increased triglycerides (p = 2.6×10(-14), n = 93,440), increased waist-to-hip ratio (p = 1.8×10(-5), n = 77,167), increased glucose two hours post oral glucose tolerance testing (p = 4.4×10(-3), n = 15,234), increased fasting insulin (p = 0.015, n = 48,238), but with lower in HDL-cholesterol concentrations (p = 4.5×10(-13), n = 96,748) and decreased BMI (p = 1.4×10(-4), n = 121,335). These findings identify novel genetic determinants of adiponectin levels, which, taken together, influence risk of T2D and markers of insulin resistance.
Resumo:
Sequence homologies suggest that the Bacillus subtilis 168 tagO gene encodes UDP-N-acetylglucosamine:undecaprenyl-P N-acetylglucosaminyl 1-P transferase, the enzyme responsible for catalysing the first step in the synthesis of the teichoic acid linkage unit, i.e. the formation of undecaprenyl-PP-N-acetylglucosamine. Inhibition of tagO expression mediated by an IPTG-inducible P(spac) promoter led to the development of a coccoid cell morphology, a feature characteristic of mutants blocked in teichoic acid synthesis. Indeed, analyses of the cell-wall phosphate content, as well as the incorporation of radioactively labelled precursors, revealed that the synthesis of poly(glycerol phosphate) and poly(glucosyl N-acetylgalactosamine 1-phosphate), the two strain 168 teichoic acids known to share the same linkage unit, was affected. Surprisingly, under phosphate limitation, deficiency of TagO precludes the synthesis of teichuronic acid, which is normally induced under these conditions. The regulatory region of tagO, containing two partly overlapping sigma(A)-controlled promoters, is similar to that of sigA, the gene encoding the major sigma factor responsible for growth. Here, the authors discuss the possibility that TagO may represent a pivotal element in the multi-enzyme complexes responsible for the synthesis of anionic cell-wall polymers, and that it may play one of the key roles in balanced cell growth.
Resumo:
BACKGROUND: Food allergy is a common allergic disorder--especially in early childhood. The avoidance of the allergenic food is the only available method to prevent further reactions in sensitized patients. A better understanding of the immunologic mechanisms involved in this reaction would help to develop therapeutic approaches applicable to the prevention of food allergy. OBJECTIVE: To establish a multi-cell in vitro model of sensitized intestinal epithelium that mimics the intestinal epithelial barrier to study the capacity of probiotic microorganisms to modulate permeability, translocation and immunoreactivity of ovalbumin (OVA) used as a model antigen. METHODS: Polarized Caco-2 cell monolayers were conditioned by basolateral basophils and used to examine apical to basolateral transport of OVA by ELISA. Activation of basophils with translocated OVA was measured by beta-hexosaminidase release assay. This experimental setting was used to assess how microorganisms added apically affected these parameters. Basolateral secretion of cytokine/chemokines by polarized Caco-2 cell monolayers was analysed by ELISA. RESULTS: Basophils loaded with OVA-specific IgE responded to OVA in a dose-dependent manner. OVA transported across polarized Caco-2 cell monolayers was found to trigger basolateral basophil activation. Microorganisms including lactobacilli and Escherichia coli increased transepithelial electrical resistance while promoting OVA passage capable to trigger basophil activation. Non-inflammatory levels of IL-8 and thymic stromal lymphopoietin were produced basolaterally by Caco-2 cells exposed to microorganisms. CONCLUSION: The complex model designed in here is adequate to learn about the consequence of the interaction between microorganisms and epithelial cells vis-a-vis the barrier function and antigen translocation, two parameters essential to mucosal homeostasis. It can further serve as a direct tool to search for microorganisms with anti-allergic and anti-inflammatory properties.
Resumo:
The Genetic Investigation of Anthropometric Traits (GIANT) consortium identified 14 loci in European Ancestry (EA) individuals associated with waist-to-hip ratio (WHR) adjusted for body mass index. These loci are wide and narrowing the signals remains necessary. Twelve of 14 loci identified in GIANT EA samples retained strong associations with WHR in our joint EA/individuals of African Ancestry (AA) analysis (log-Bayes factor >6.1). Trans-ethnic analyses at five loci (TBX15-WARS2, LYPLAL1, ADAMTS9, LY86 and ITPR2-SSPN) substantially narrowed the signals to smaller sets of variants, some of which are in regions that have evidence of regulatory activity. By leveraging varying linkage disequilibrium structures across different populations, single-nucleotide polymorphisms (SNPs) with strong signals and narrower credible sets from trans-ethnic meta-analysis of central obesity provide more precise localizations of potential functional variants and suggest a possible regulatory role. Meta-analysis results for WHR were obtained from 77 167 EA participants from GIANT and 23 564 AA participants from the African Ancestry Anthropometry Genetics Consortium. For fine mapping we interrogated SNPs within ± 250 kb flanking regions of 14 previously reported index SNPs from loci discovered in EA populations by performing trans-ethnic meta-analysis of results from the EA and AA meta-analyses. We applied a Bayesian approach that leverages allelic heterogeneity across populations to combine meta-analysis results and aids in fine-mapping shared variants at these locations. We annotated variants using information from the ENCODE Consortium and Roadmap Epigenomics Project to prioritize variants for possible functionality.
Resumo:
Linking the structural connectivity of brain circuits to their cooperative dynamics and emergent functions is a central aim of neuroscience research. Graph theory has recently been applied to study the structure-function relationship of networks, where dynamical similarity of different nodes has been turned into a "static" functional connection. However, the capability of the brain to adapt, learn and process external stimuli requires a constant dynamical functional rewiring between circuitries and cell assemblies. Hence, we must capture the changes of network functional connectivity over time. Multi-electrode array data present a unique challenge within this framework. We study the dynamics of gamma oscillations in acute slices of the somatosensory cortex from juvenile mice recorded by planar multi-electrode arrays. Bursts of gamma oscillatory activity lasting a few hundred milliseconds could be initiated only by brief trains of electrical stimulations applied at the deepest cortical layers and simultaneously delivered at multiple locations. Local field potentials were used to study the spatio-temporal properties and the instantaneous synchronization profile of the gamma oscillatory activity, combined with current source density (CSD) analysis. Pair-wise differences in the oscillation phase were used to determine the presence of instantaneous synchronization between the different sites of the circuitry during the oscillatory period. Despite variation in the duration of the oscillatory response over successive trials, they showed a constant average power, suggesting that the rate of expenditure of energy during the gamma bursts is consistent across repeated stimulations. Within each gamma burst, the functional connectivity map reflected the columnar organization of the neocortex. Over successive trials, an apparently random rearrangement of the functional connectivity was observed, with a more stable columnar than horizontal organization. This work reveals new features of evoked gamma oscillations in developing cortex.
Resumo:
Giant congenital naevi are pigmented childhood lesions that frequently lead to melanoma, the most aggressive skin cancer. The mechanisms underlying this malignancy are largely unknown, and there are no effective therapies. Here we describe a mouse model for giant congenital naevi and show that naevi and melanoma prominently express Sox10, a transcription factor crucial for the formation of melanocytes from the neural crest. Strikingly, Sox10 haploinsufficiency counteracts Nras(Q61K)-driven congenital naevus and melanoma formation without affecting the physiological functions of neural crest derivatives in the skin. Moreover, Sox10 is also crucial for the maintenance of neoplastic cells in vivo. In human patients, virtually all congenital naevi and melanomas are SOX10 positive. Furthermore, SOX10 silencing in human melanoma cells suppresses neural crest stem cell properties, counteracts proliferation and cell survival, and completely abolishes in vivo tumour formation. Thus, SOX10 represents a promising target for the treatment of congenital naevi and melanoma in human patients.
Resumo:
Background: HSTL is a rare entity characterized by an infiltration of bone marrow, spleen and liver tissues by neoplastic gammadelta (gd) -more rarely alphabeta (ab)- T cells. Its pathogenesis is poorly understood. Our purpose was to identify the molecular signature of HSTL and explore molecular pathways implicated in its pathogenesis.Methods: Gene expression profiling and array CGH analysis of 10 HSTL samples (7gd, 3ab), 1 HSTL cell line (DERL2), 2 normal gd samples together with 16 peripheral T-cell lymphoma not otherwise specified (PTCL,NOS) and 7 nasal NK/T cell lymphomas were performed.Results: By unsupervised analysis, ab and gdHSTL clustered together remarkably separated from other lymphoma entities. Compared to PTCL, NOS, HSTL overexpresed genes encoding NK-associated molecules, oncogenes (VAV3) and the Sphingosine-1-phosphatase receptor 5 involved in cell trafficking. Compared to normal gd cells, HSTL overexpressed genes encoding NK-cell and multi drug resistance-associated molecules, transcription factors (RHOB), oncogenes (MAFB, FOS, JUN, VAV3) and the tyrosine kinase SYK whereas genes encoding cytotoxic molecules and the tumor suppressor gene AIM1 were among the most downregulated. By immunohistochemistry, SYK was demonstrated on HSTL cells with expression of its phosphorylated form in DERL2 cells by Western blot. Functional studies using a SYK inhibitor revealed a dose dependent increase of apoptotic DERL2 cells suggesting that SYK could be a candidate target for pharmacologic inhibition. Downexpression of AIM1 was validated by qRT-PCR. Methylation analysis of DERL2 genomic DNA treated by bisulfite demonstrated highly methylated CpG islands of AIM1. Genomic profiles confirmed recurrent isochromosome 7q (n=6/9) without alterations at 9q22 and 6q21 containing SYK and AIM1 genes, respectively.Conclusion: The current study identifies a distinct molecular signature for HSTL and highlights oncogenic pathways which offer rationale for exploring new therapeutic options such as SYK inhibitors. It supports the view of gd and ab HSTL as a single entity.
Resumo:
Large viruses infecting algae or amoebae belong to the NucleoCytoplasmic Large DNA Viruses (NCLDV) and present genotypic and phenotypic characteristics that have raised major interest among microbiologists. Here, we describe a new large virus discovered in Acanthamoeba castellanii co-culture of an environmental sample. The virus, referred to as Lausannevirus, has a very limited host range, infecting Acanthamoeba spp. but being unable to infect other amoebae and mammalian cell lines tested. Within A. castellanii, this icosahedral virus of about 200 nm exhibits a development cycle similar to Mimivirus, with an eclipse phase 2 h post infection and a logarithmic growth leading to amoebal lysis in less than 24 h. The 346 kb Lausannevirus genome presents similarities with the recently described Marseillevirus, sharing 89% of genes, and thus belongs to the same family as confirmed by core gene phylogeny. Interestingly, Lausannevirus and Marseillevirus genomes both encode three proteins with predicted histone folds, including two histone doublets, that present similarities to eukaryotic and archaeal histones. The discovery of Lausannevirus and the analysis of its genome provide some insight in the evolution of these large amoebae-infecting viruses.