181 resultados para mitral valve replacement
Resumo:
OBJECTIVES: Due to the high prevalence of renal failure in transcatheter aortic valve replacement (TAVR) candidates, a non-contrast MR technique is desirable for pre-procedural planning. We sought to evaluate the feasibility of a novel, non-contrast, free-breathing, self-navigated three-dimensional (SN3D) MR sequence for imaging the aorta from its root to the iliofemoral run-off in comparison to non-contrast two-dimensional-balanced steady-state free-precession (2D-bSSFP) imaging. METHODS: SN3D [field of view (FOV), 220-370 mm(3); slice thickness, 1.15 mm; repetition/echo time (TR/TE), 3.1/1.5 ms; and flip angle, 115°] and 2D-bSSFP acquisitions (FOV, 340 mm; slice thickness, 6 mm; TR/TE, 2.3/1.1 ms; flip angle, 77°) were performed in 10 healthy subjects (all male; mean age, 30.3 ± 4.3 yrs) using a 1.5-T MRI system. Aortic root measurements and qualitative image ratings (four-point Likert-scale) were compared. RESULTS: The mean effective aortic annulus diameter was similar for 2D-bSSFP and SN3D (26.7 ± 0.7 vs. 26.1 ± 0.9 mm, p = 0.23). The mean image quality of 2D-bSSFP (4; IQR 3-4) was rated slightly higher (p = 0.03) than SN3D (3; IQR 2-4). The mean total acquisition time for SN3D imaging was 12.8 ± 2.4 min. CONCLUSIONS: Our results suggest that a novel SN3D sequence allows rapid, free-breathing assessment of the aortic root and the aortoiliofemoral system without administration of contrast medium. KEY POINTS: • The prevalence of renal failure is high among TAVR candidates. • Non-contrast 3D MR angiography allows for TAVR procedure planning. • The self-navigated sequence provides a significantly reduced scanning time.
Resumo:
Between September 1979 and December 1982, 56 St Jude Medical valvular prostheses were implanted in 54 patients over 65 years of age. Surgery consisted in simple aortic valve replacement (35 cases), simple mitral valve replacement (12 cases), double aortic and mitral valve replacement (2 cases), valve replacement and coronary artery bypass surgery (3 cases), aortic valve replacement and replacement of the ascending aorta (1 case) and mitral valve replacement and tricuspid annuloplasty (1 case). The operative mortality (within 30 days of surgery) was 3.5% (2 cases). Patients were assessed by clinical examination, ECG, chest X-ray, echocardiogram and laboratory investigations on average 19 months after surgery. There were 3 late deaths (1 endocarditis, 1 cardiac failure and 1 subdural haematoma). No cases of significant haemolysis were observed. There were no cases of thrombosis of the valve or any deaths directly related to the valve. Four patients had cerebral embolism (4.9% per patient/year). None were fatal and only 1 patient had sequellae. Clinical improvement was very significant; 96% of the patients are now in the NYHA Classes I and II whilst 80% were in Class III or IV before surgery. The cardiothoracic ratio decreased significantly from 0.56 to 0.51 (p less than 0.01). The authors conclude that elderly patients may derive great benefits from valvular cardiac surgery and that age in itself is not a contraindication to this type of surgery. The St Jude Medical prosthesis is an excellent prosthesis but thromboembolism remains a major problem as with other mechanical prostheses. Anticoagulation for life is essential.
Resumo:
Left ventricular hypertrophy (LVH) is due to pressure overload or mechanical stretch and is thought to be associated with remodeling of gap-junctions. We investigated whether the expression of connexin 43 (Cx43) is altered in humans in response to different degrees of LVH. The expression of Cx43 was analyzed by quantitative polymerase chain reaction, Western blot analysis and immunohistochemistry on left ventricular biopsies from patients undergoing aortic or mitral valve replacement. Three groups were analyzed: patients with aortic stenosis with severe LVH (n=9) versus only mild LVH (n=7), and patients with LVH caused by mitral regurgitation (n=5). Cx43 mRNA expression and protein expression were similar in the three groups studied. Furthermore, immunohistochemistry revealed no change in Cx43 distribution. We can conclude that when compared with mild LVH or with LVH due to volume overload, severe LVH due to chronic pressure overload is not accompanied by detectable changes of Cx43 expression or spatial distribution.
Resumo:
Mitral regurgitation (MR) involves systolic retrograde flow from the left ventricle into the left atrium. While trivial MR is frequent in healthy subjects, moderate to severe MR constitutes the second most prevalent valve disease after aortic valve stenosis. Major causes of severe MR in Western countries include degenerative valve disease (myxomatous disease, flail leaflet, annular calcification) and ischaemic heart disease, while rheumatic disease remains a major cause of MR in developing countries. Chronic MR typically progresses insidiously over many years. Once established, however, severe MR portends a poor prognosis. The severity of MR can be assessed by various techniques, Doppler echocardiography being the most widely used. Mitral valve surgery is the only treatment of proven efficacy. It alleviates clinical symptoms and prevents ventricular dilatation and heart failure (or, at least, it attenuates further progression of these abnormalities). Valve repair significantly improves clinical outcomes compared with valve replacement, reducing mortality by approximately 70%. Reverse LV remodelling after valve repair occurs in half of patients with functional MR. Percutaneous, catheter-based to mitral valve repair is a novel approach currently under clinical scrutiny, with encouraging preliminary results. This modality may provide a valuable alternative to mitral valve surgery, especially in critically ill patients.
Resumo:
IMPORTANCE: There are limited prospective, controlled data evaluating survival in patients receiving early surgery vs medical therapy for prosthetic valve endocarditis (PVE). OBJECTIVE: To determine the in-hospital and 1-year mortality in patients with PVE who undergo valve replacement during index hospitalization compared with patients who receive medical therapy alone, after controlling for survival and treatment selection bias. DESIGN, SETTING, AND PARTICIPANTS: Participants were enrolled between June 2000 and December 2006 in the International Collaboration on Endocarditis-Prospective Cohort Study (ICE-PCS), a prospective, multinational, observational cohort of patients with infective endocarditis. Patients hospitalized with definite right- or left-sided PVE were included in the analysis. We evaluated the effect of treatment assignment on mortality, after adjusting for biases using a Cox proportional hazards model that included inverse probability of treatment weighting and surgery as a time-dependent covariate. The cohort was stratified by probability (propensity) for surgery, and outcomes were compared between the treatment groups within each stratum. INTERVENTIONS: Valve replacement during index hospitalization (early surgery) vs medical therapy. MAIN OUTCOMES AND MEASURES: In-hospital and 1-year mortality. RESULTS: Of the 1025 patients with PVE, 490 patients (47.8%) underwent early surgery and 535 individuals (52.2%) received medical therapy alone. Compared with medical therapy, early surgery was associated with lower in-hospital mortality in the unadjusted analysis and after controlling for treatment selection bias (in-hospital mortality: hazard ratio [HR], 0.44 [95% CI, 0.38-0.52] and lower 1-year mortality: HR, 0.57 [95% CI, 0.49-0.67]). The lower mortality associated with surgery did not persist after adjustment for survivor bias (in-hospital mortality: HR, 0.90 [95% CI, 0.76-1.07] and 1-year mortality: HR, 1.04 [95% CI, 0.89-1.23]). Subgroup analysis indicated a lower in-hospital mortality with early surgery in the highest surgical propensity quintile (21.2% vs 37.5%; P = .03). At 1-year follow-up, the reduced mortality with surgery was observed in the fourth (24.8% vs 42.9%; P = .007) and fifth (27.9% vs 50.0%; P = .007) quintiles of surgical propensity. CONCLUSIONS AND RELEVANCE: Prosthetic valve endocarditis remains associated with a high 1-year mortality rate. After adjustment for differences in clinical characteristics and survival bias, early valve replacement was not associated with lower mortality compared with medical therapy in the overall cohort. Further studies are needed to define the effect and timing of surgery in patients with PVE who have indications for surgery.
Resumo:
The majority of transcatheter aortic valve implantations, structural heart procedures and the newly developed transcatheter mitral valve repair and replacement are traditionally performed either through a transfemoral or a transapical access site, depending on the presence of severe peripheral vascular disease or anatomic limitations. The transapical approach, which carries specific advantages related to its antegrade nature and the short distance between the introduction site and the cardiac target, is traditionally performed through a left anterolateral mini-thoracotomy and requires rib retractors, soft tissue retractors and reinforced apical sutures to secure, at first, the left ventricular apex for the introduction of the stent-valve delivery systems and then to seal the access site at the end of the procedure. However, despite the advent of low-profile apical sheaths and newly designed delivery systems, the apical approach represents a challenge for the surgeon, as it has the risk of apical tear, life-threatening apical bleeding, myocardial damage, coronary damage and infections. Last but not least, the use of large-calibre stent-valve delivery systems and devices through standard mini-thoracotomies compromises any attempt to perform transapical transcatheter structural heart procedures entirely percutaneously, as happens with the transfemoral access site, or via a thoracoscopic or a miniaturised video-assisted percutaneous technique. During the past few years, prototypes of apical access and closure devices for transapical heart valve procedures have been developed and tested to make this standardised successful procedure easier. Some of them represent an important step towards the development of truly percutaneous transcatheter transapical heart valve procedures in the clinical setting.
Resumo:
We reviewed our surgery registry, to identify predictive risk factors for operative results, and to analyse the long-term survival outcome in octogenarians operated for primary isolated aortic valve replacement (AVR). A total of 124 consecutive octogenarians underwent open AVR from January 1990 to December 2005. Combined procedures and redo surgery were excluded. Selected variables were studied as risk factors for hospital mortality and early neurological events. A follow-up (FU; mean FU time: 77 months) was obtained (90% complete), and Kaplan-Meier plots were used to determine survival rates. The mean age was 82+/-2.2 (range: 80-90 years; 63% females). Of the group, four patients (3%) required urgent procedures, 10 (8%) had a previous myocardial infarction, six (5%) had a previous coronary angioplasty and stenting, 13 patients (10%) suffered from angina and 59 (48%) were in the New York Heart Association (NYHA) class III-IV. We identified 114 (92%) degenerative stenosis, six (5%) post-rheumatic stenosis and four (3%) active endocarditis. The predicted mortality calculated by logistic European System for Cardiac Operative Risk Evaluation (EuroSCORE) was 12.6+/-5.7%, and the observed hospital mortality was 5.6%. Causes of death included severe cardiac failure (four patients), multi-organ failure (two) and sepsis (one). Complications were transitory neurological events in three patients (2%), short-term haemodialysis in three (2%), atrial fibrillation in 60 (48%) and six patients were re-operated for bleeding. Atrio-ventricular block, myocardial infarction or permanent stroke was not detected. The age at surgery and the postoperative renal failure were predictors for hospital mortality (p value <0.05), whereas we did not find predictors for neurological events. The mean FU time was 77 months (6.5 years) and the mean age of surviving patients was 87+/-4 years (81-95 years). The actuarial survival estimates at 5 and 10 years were 88% and 50%, respectively. Our experience shows good short-term results after primary isolated standard AVR in patients more than 80 years of age. The FU suggests that aortic valve surgery in octogenarians guarantees satisfactory long-term survival rates and a good quality of life, free from cardiac re-operations. In the era of catheter-based aortic valve implantation, open-heart surgery for AVR remains the standard of care for healthy octogenarians.
Resumo:
GOAL: To evaluate the impact of the Ross operation, recently (1997) introduced in our unit, for the treatment of patients with congenital aortic valve stenosis. METHODS: The period from January 1997 to December 2000 was compared with the previous 5 years (1992-96). Thirty-seven children (< 16 yrs) and 49 young adults (16-50 yrs) with congenital aortic valve stenosis underwent one of these treatments: percutaneous balloon dilatation (PBD), aortic valve commissurotomy, aortic valve replacement and the Ross operation. The Ross operation was performed in 16 patients, mean age 24.5 yrs (range 9-46 yrs) with a bicuspid stenotic aortic valve, 7/10 adults with calcifications, 2/10 adults with previous aortic valve commissurotomy, 4/6 children with aortic regurgitation following PBD, and 1/6 children who had had a previous aortic valve replacement with a prosthetic valve and aortic root enlargement. RESULTS: PBD was followed by death in two neonates (fibroelastosis); all other children survived PBD. Although there were no deaths, PBD in adults was recently abandoned, owing to unfavourable results. Aortic valve commissurotomy showed good results in children (no deaths). Aortic valve replacement, although associated with good results (no deaths), has been recently abandoned in children in favour of the Ross operation. Over a mean follow-up of 16 months (2-40 months) all patients are asymptomatic following Ross operation, with no echocardiographic evidence of aortic valve regurgitation in 10/16 patients and with trivial regurgitation in 6/16 patients. CONCLUSIONS: The approach now for children and young adults with congenital aortic valve stenosis should be as follows: (1) PBD is the first choice in neonates and infants; (2) Aortic valve commissurotomy is the first choice for children, neonates and infants after failed PBD; (3) The Ross operation is increasingly used in children after failed PBD and in young adults, even with a calcified aortic valve.
Resumo:
Our experience with the Sapien trans-apical aortic valve (Edwards Lifesciences Inc., Irvine, CA, USA) has been straightforward without per-procedural mortality except in 1/16 consecutive cases who developed non-apical haemorrhage early after valve implantation. We describe the case of an 84-year-old female carrying a very high operative risk (logistic EuroScore of 44%), who underwent a trans-apical stent-valve implantation for severe and symptomatic aortic valve stenosis (23 mm). Due to massive blood loss, an emergency sternotomy and cannulation for cardiopulmonary bypass resuscitation were necessary to treat (without success) an unusual and unexpected subaortic left ventricular free-wall rupture that occurred few minutes after the stent-valve positioning and implantation. To the best of our knowledge, this is the first described case of a left ventricular free-wall rupture occurring after an otherwise non-complicated standard catheter-based aortic valve replacement.
Resumo:
The trans-apical aortic valve implantation (TA-AVI) is an established technique for high-risk patients requiring aortic valve replacement. Traditionally, preoperative (computed tomography (CT) scan, coronary angiogram) and intra-operative imaging (fluoroscopy) for stent-valve positioning and implantation require contrast medium injections. To preserve the renal function in elderly patients suffering from chronic renal insufficiency, a fully echo-guided trans-catheter valve implantation seems to be a reasonable alternative. We report the first successful TA-AVI procedure performed solely under trans-oesophageal echocardiogram control, in the absence of contrast medium injections.
Resumo:
OBJECTIVES: Residual mitral regurgitation after valve repair worsens patients' clinical outcome. Postimplant adjustable mitral rings potentially address this issue, allowing the reshaping of the annulus on the beating heart under echocardiography control. We developed an original mitral ring allowing valve geometry remodelling after the implantation and designed an animal study to assess device effectiveness in correcting residual mitral regurgitation. METHODS: The device consists of two concentric rings: one internal and flexible, sutured to the mitral annulus and a second external and rigid. A third conic element slides between the two rings, modifying the shape of the flexible ring. This sliding element is remotely activated with a rotating tool. Animal model: in adult swine, under cardio pulmonary bypass and cardiac arrest, we shortened the primary chordae of P2 segment to reproduce Type III regurgitation and implanted the active ring. We used intracardiac ultrasound to assess mitral regurgitation and the efficacy of the active ring to correct it. RESULTS: Severe mitral regurgitation (3+ and 4+) was induced in eight animals, 54 ± 6 kg in weight. Vena contracta width decreased from 0.8 ± 0.2 to 0.1 cm; proximal isovelocity surface area radius decreased from 0.8 ± 0.2 to 0.1 cm and effective regurgitant orifice area decreased from 0.50 ± 0.1 to 0.1 ± 0.1 cm(2). Six animals had a reversal of systolic pulmonary flow that normalized following the activation of the device. All corrections were reversible. CONCLUSIONS: Postimplant adjustable mitral ring corrects severe mitral regurgitation through the reversible modification of the annulus geometry on the beating heart. It addresses the frequent and morbid issue of recurrent mitral valve regurgitation.
Resumo:
Background and aim of the study: Bicuspid aortic valve is the most common congenital heart malformation, and a high percentage of patients with this condition will develop complications over time. It is rare that pilots undergo aortic valve surgery, and the confirmation of flight-licensing requirements after aortic valve replacement (AVR) is a challenge for the patient's cardiac surgeon and, particularly, for the Aeromedical Examiner (AME). Only AMEs are able to determine the flight status of pilots. Furthermore, in military and in civil aviation (e.g., Red Bull Air Race), the high G-load environment experienced by pilots is an exceptional physiological parameter, which must be considered postoperatively. Methods: A review was conducted of the aeronautical, surgical and medical literature, and of European pilot-licensing regulations. Case studies are also reported for two Swiss Air Force pilots. Results: According to European legislation, pilots can return to flight duty from the sixth postoperative month, with the following limitations: that an aortic bioprosthesis presents no restrictions in cardiac function, requires no cardioactive medications, yet requires a flight operation with co-pilot, the avoidance of accelerations over +3 Gz and, in military aviation, restricts the pilot to non-ejection-seat aircraft. The patient follow up must include both echocardiographic and rhythm assessments every six months. Mechanical prostheses cannot be certified because the required anticoagulation therapy is a disqualifying condition for pilot licensing. Conclusion: Pilot licensing after aortic valve surgery is possible, but with restrictions. The +Gz exposition is of concern in both military and civilian aviation (aerobatics). The choice of bioprosthesis type and size is determinant. Pericardial and stentless valves seem to show better flow characteristics under high-output conditions. Repetitive cardiological controls are mandatory for the early assessment of structural valve disease and rhythm disturbances. A pre-emptive timing is recommended when reoperation is indicated, without waiting for clinical manifestations of structural valve disease.
Resumo:
Standard surgical aortic valve replacement with a biological prosthesis remains the treatment of choice for low- and mid-risk elderly patients (traditionally >65 years of age) suffering from severe symptomatic aortic valve stenosis or insufficiency, and for young patients with formal contraindications to long-lasting anticoagulation. Unfortunately, despite the fact that several technical improvements have noticeably improved the resistance of pericardial and bovine bioprostheses to leaflet calcifications and ruptures, the risk of early valve failure with rapid degeneration still exists, especially for patients under haemodialysis and for patients <60 years of age at the time of surgery. Until now, redo open heart surgery under cardiopulmonary bypass and on cardioplegic arrest was the only available therapeutic option in case of bioprosthesis degeneration, but it carried a higher surgical risk when elderly patients with severe concomitant comorbidities were concerned. Since a few years, the advent of new transcatheter aortic valve procedures has opened new horizons in cardiac surgery and, in particular, the possibility of implanting stented valves within the degenerated stented bioprosthesis, the so-called 'valve-in-valve' (VinV) concept, has become a clinical practice in experienced cardiac centres. The VinV procedure represents a minimally invasive approach dedicated to high-risk redo patients, and published preliminary reports have shown a success rate of 100% with absence of significant valvular leaks, acceptable transvalvular gradients and low complication rate. However, this procedure is not riskless and the most important concerns are about the size mismatch and the right positioning within the degenerated bioprosthesis. In this article, we review the limited available literature about VinV procedures, underline important technical details for the positioning and provide guidelines to prevent valve-prosthesis mismatch comparing the three sizes of the only commercially available transapical device, the Edwards Sapien, with the inner diameter of three of the most commonly used stented bioprostheses.
Resumo:
Background: Transcatheter aortic valve implantations (TAVI) are indicated in high risk patients requiring aortic valve replacement (AVR). However, CT-scans, coronary angiograms and intraoperative aortographies can induce contrast-related nephro-toxicity with a concrete risk of acute postoperative renal failure, especially in severely diseased patients. To prevent this complication, we routinely perform transapical (TA) TAVI guided by transesophageal echocardiogram and fluoroscopy without angiography. Material and Methods: From November 2008 to December 2009, 31 high-risk patients suffering from severe symptomatic aortic stenosis underwent TA-TAVI in our institution. The preoperative imaging assessment (cardiac CT-scan and coronary angiogram) was performed no less than 10 days before the TA-TAVI in all patients (to recover the renal function) with a low-dose protocol for injected contrast medium (equivalent to the patient's weight for the CT-scan). During the TA-TAVI, the stent-valve positioning was performed without any contrast injection. Results: 32 consecutive stent-valve were successfully positioned in 31 patients (mean age 80.76 8 8.3 years; mean EuroSCORE: 32.2 8 12.9%) through a transapical access (1 patient required 2 valves for valve embolisation). The mean preoperative creatinine and urea blood levels were 102.6 8 67.7 _ g/dl (range 53-339 _ g/dl) and 8.45 8 4.9 mmol/l, respectively. A chronic renal insufficiency affected 12 patients (38.7%) with 1 patient in pre-dialysis. Postoperatively, no patient developed acute myocardial infarction, atrio-ventricular block or acute renal insufficiency (mean creatinine level: 89.7 8 64.55 _ g/dl; urea level: 7.11 8 3.47 mmol/l) and the 30-days mortality was 9.67% (3 patients). Conclusion: Specific preoperative and intraoperative protocols that require lowdoses or absence of contrast medium are useful to preserve the renal function in high risk patients operated for TAVI.