33 resultados para material decomposition
Resumo:
In order to evaluate the relationship between the apparent complexity of hillslope soil moisture and the emergent patterns of catchment hydrological behaviour and water quality, we need fine-resolution catchment-wide data on soil moisture characteristics. This study proposes a methodology whereby vegetation patterns obtained from high-resolution orthorectified aerial photographs are used as an indicator of soil moisture characteristics. This enables us to examine a set of hypotheses regarding what drives the spatial patterns of soil moisture at the catchment scale (material properties or topography). We find that the pattern of Juncus effusus vegetation is controlled largely by topography and mediated by the catchment's material properties. Characterizing topography using the topographic index adds value to the soil moisture predictions relative to slope or upslope contributing area (UCA). However, these predictions depart from the observed soil moisture patterns at very steep slopes or low UCAs. Copyright (c) 2012 John Wiley & Sons, Ltd.
Resumo:
This paper deals with a phenomenologically motivated magneto-viscoelastic coupled finite strain framework for simulating the curing process of polymers under the application of a coupled magneto-mechanical road. Magneto-sensitive polymers are prepared by mixing micron-sized ferromagnetic particles in uncured polymers. Application of a magnetic field during the curing process causes the particles to align and form chain-like structures lending an overall anisotropy to the material. The polymer curing is a viscoelastic complex process where a transformation from fluid. to solid occurs in the course of time. During curing, volume shrinkage also occurs due to the packing of polymer chains by chemical reactions. Such reactions impart a continuous change of magneto-mechanical properties that can be modelled by an appropriate constitutive relation where the temporal evolution of material parameters is considered. To model the shrinkage during curing, a magnetic-induction-dependent approach is proposed which is based on a multiplicative decomposition of the deformation gradient into a mechanical and a magnetic-induction-dependent volume shrinkage part. The proposed model obeys the relevant laws of thermodynamics. Numerical examples, based on a generalised Mooney-Rivlin energy function, are presented to demonstrate the model capacity in the case of a magneto-viscoelastically coupled load.