98 resultados para marsh plants


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cuticle is a physical barrier that prevents water loss and protects against irradiation, xenobiotics and pathogens. This classic textbook statement has recently been revisited and several observations were made showing that this dogma falls short of being universally true. Both transgenic Arabidopsis thaliana lines expressing cell wall-targeted fungal cutinase (so-called CUTE plants) or lipase as well as several A. thaliana mutants with altered cuticular structure remained free of symptoms after an inoculation with Botrytis cinerea. The alterations in cuticular structure lead to the release of fungitoxic substances and changes in gene expression that form a multifactorial defence response. Several models to explain this syndrome are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND AND AIMS: Changes in the sex allocation (i.e. in pollen versus seed production) of hermaphroditic plants often occur in response to the environment. In some homosporous ferns, gametophytes choose their gender in response to chemical cues sent by neighbours, such that spores develop as male gametophytes if they perceive a female or hermaphrodite nearby. Here it is considered whether a similar process might occur in the androdioecious angiosperm species Mercurialis annua, in which males co-occur with hermaphrodites; previous work on a Spanish population of M. annua found that individuals were more likely to develop as males at high density. METHODS: Using a novel approach to treat plants with leachate from pots containing males or hermaphrodites of M. annua, the hypothesis that individuals assess their mating opportunities, and adjust their sex expression accordingly, was tested through an exchange of chemical cues through the soil. KEY RESULTS: For the population under study, from Morocco, no evidence was found for soil-signal-dependent sex expression: neither sex ratios nor sex allocation differed among experimental treatments. CONCLUSIONS: The results imply either that the Moroccan population under study behaves differently from that previously studied in Spain (pointing to potential geographical variation in plasticity for sex expression), or that our method failed to capture the signals used by M. annua for adjustment of sex expression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transgenic plants producing peroxisomal polyhydroxy- alkanoate (PHA) from intermediates of fatty acid degradation were used to study carbon flow through the beta-oxidation cycle. Growth of transgenic plants in media containing fatty acids conjugated to Tween detergents resulted in an increased accumulation of PHA and incorporation into the polyester of monomers derived from the beta-oxidation of these fatty acids. Tween-laurate was a stronger inducer of beta-oxidation, as measured by acyl-CoA oxidase activity, and a more potent modulator of PHA quantity and monomer composition than Tween-oleate. Plants co-expressing a peroxisomal PHA synthase with a capryl-acyl carrier protein thioesterase from Cuphea lanceolata produced eightfold more PHA compared to plants expressing only the PHA synthase. PHA produced in double transgenic plants contained mainly saturated monomers ranging from 6 to 10 carbons, indicating an enhanced flow of capric acid towards beta-oxidation. Together, these results support the hypothesis that plant cells have mechanisms which sense levels of free or esterified unusual fatty acids, resulting in changes in the activity of the beta-oxidation cycle as well as removal and degradation of these unusual fatty acids through beta-oxidation. Such enhanced flow of fatty acids through beta-oxidation can be utilized to modulate the amount and composition of PHA produced in transgenic plants. Furthermore, synthesis of PHAs in plants can be used as a new tool to study the quality and relative quantity of the carbon flow through beta-oxidation as well as to analyse the degradation pathway of unusual fatty acids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The persistence of sexual reproduction in the face of competition from asexual invaders is more likely if asexual lineages are produced infrequently or have low fitness. The generation rate and success of new asexual lineages will be influenced by the proximate mechanisms underlying transitions to asexuality. As such, characterization of these mechanisms can help explain the distribution of reproductive modes among natural populations. Here, we synthesize the literature addressing proximate causes of transitions from sexual to asexual reproduction in plants and animals. In cyclical and facultatively asexual taxa, individual mutations can cause obligate asexuality. The evolution of asexuality in obligately sexual groups is more complex, requiring the simultaneous acquisition of two traits generally controlled by different genetic factors: unreduced gamete formation and spontaneous development of unfertilized gametes. At least three 'pre-adaptations' could favour transitions to obligate asexuality in obligate sexuals. First, linkage among loci affecting separate key components of asexuality facilitates its spread, with evidence for these linkage blocks in plants. Second, asexuality should evolve more readily in haplodiploids; support for this hypothesis comes from two examples where a single locus causes transitions to asexuality. Third, standing genetic variation for the production of unreduced gametes could facilitate transitions to asexuality, but whether the ability to produce unreduced gametes contributes to the evolution of obligate asexuality remains unclear. We close by reviewing the associations between asexuality, hybridization and polyploidy, and argue that current data suggest that hybridization is more likely to play a causal role in transitions to asexuality than polyploidy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plants produce a range of biopolymers for purposes such as maintenance of structural integrity, carbon storage, and defense against pathogens and desiccation. Several of these natural polymers are used by humans as food and materials, and increasingly as an energy carrier. In this review, we focus on plant biopolymers that are used as materials in bulk applications, such as plastics and elastomers, in the context of depleting resources and climate change, and consider technical and scientific bottlenecks in the production of novel or improved materials in transgenic or alternative crop plants. The biopolymers discussed are natural rubber and several polymers that are not naturally produced in plants, such as polyhydroxyalkanoates, fibrous proteins and poly-amino acids. In addition, monomers or precursors for the chemical synthesis of biopolymers, such as 4-hydroxybenzoate, itaconic acid, fructose and sorbitol, are discussed briefly

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inorganic phosphate (Pi) and zinc (Zn) are two essential nutrients for plant growth. In soils, these two minerals are either present in low amounts or are poorly available to plants. Consequently, worldwide agriculture has become dependent on external sources of Pi and Zn fertilizers to increase crop yields. However, this strategy is neither economically nor ecologically sustainable in the long term, particularly for Pi, which is a non-renewable resource. To date, research has emphasized the analysis of mineral nutrition considering each nutrient individually, and showed that Pi and Zn homeostasis is highly regulated in a complex process. Interestingly, numerous observations point to an unexpected interconnection between the homeostasis of the two nutrients. Nevertheless, despite their fundamental importance, the molecular bases and biological significance of these interactions remain largely unknown. Such interconnections can account for shortcomings of current agronomic models that typically focus on improving the assimilation of individual elements. Here, current knowledge on the regulation of the transport and signalling of Pi and Zn individually is reviewed, and then insights are provided on the recent progress made towards a better understanding of the Zn-Pi homeostasis interaction in plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traits that mediate species interactions are evolutionarily shaped by biotic and abiotic drivers, yet we know relatively little about the relative importance of these factors. Herbivore pressure, along with resource availability and third-party' mutualists, are hypothesized to play a major role in the evolution of plant defence traits. Here, we used the model system Plantago lanceolata, which grows along steep elevation gradients in the Swiss Alps, to investigate the effect of elevation, herbivore pressure, mycorrhizal inoculation and temperature on plant resistance. Over a 1200 m elevation gradient, the levels of herbivory and iridoid glycosides (IGs) declined with increasing elevation. By planting seedlings at three different elevations, we further showed that both low-elevation growing conditions and mycorrhizal inoculation resulted in increased plant resistance to herbivores. Finally, using a temperature-controlled experiment comparing high- and low-elevation ecotypes, we showed that high-elevation ecotypes are less resistant to herbivory, and that lower temperatures impair IGs deployment after herbivore attack. We thus propose that both lower herbivore pressure, and colder temperatures relax the defense syndrome of high elevation plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ETHNOPHARMACOLOGICAL RELEVANCE: "Reverse pharmacology", also called "bedside-to-bench" or "field to pharmacy" approach, is a research process starting with documentation of clinical outcome as observed by patients with different therapeutic regimens. The treatment most significantly associated with cure is selected for future studies: first, clinical safety and efficacy; then in vivo and vitro studies. Some clinical data, i.e. details on patient status and progress, can be collected during ethnobotanical surveys; they will help clinical researchers and, once effectiveness and safety are established, will also help users of traditional medicine make safer and more effective choices. To gather clinical data successfully, ethnopharmacologists need to be backed by an appropriate team of specialists in medicine and epidemiology. Ethnopharmacologists can also gather important data on traditional medicine safety. MATERIALS AND METHODS: The first step is to create a consensus on the meaning of "clinical data", their interest and importance. An understanding of why "a cure is not a proof of effectiveness" is a starting point to avoid faulty interpretation of the clinical observations. RESULTS: Experience showed that, with the "bedside-to-bench" approach, a treatment derived from traditional recipe can be scientifically validated (in terms of safety and effectiveness) with a cost of less than a million euros, thus providing an end-product that is affordable, available and sustainable. CONCLUSIONS: With rigorous clinical study results, medicinal plant users gain the possibility to refine heath strategies. The field surveyor may gain a better relationship with the population, once she/he is seen as bringing information useful for the quality of care in the community.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mountain ranges are biodiversity hotspots worldwide and provide refuge to many organisms under contemporary climate change. Gathering field information on mountain biodiversity over time is of primary importance to understand the response of biotic communities to climate changes. For plants, several long-term observation sites and networks of mountain biodiversity are emerging worldwide to gather field data and monitor altitudinal range shifts and community composition changes under contemporary climate change. Most of these monitoring sites, however, focus on alpine ecosystems and mountain summits, such as the global observation research initiative in alpine environments (GLORIA). Here we describe the Alps Vegetation Database, a comprehensive community level archive (GIVD ID EU-00-014) which aims at compiling all available geo-referenced vegetation plots from lowland forests to alpine grasslands across the greatest mountain range in Europe: the Alps. This research initiative was funded between 2008 and 2011 by the Danish Council for Independent Research and was part of a larger project to compare cross-scale plant community structure between the Alps and the Scandes. The Alps Vegetation Database currently harbours 35,731 geo-referenced vegetation plots and 5,023 valid taxa across Mediterranean, temperate and alpine environments. The data are mainly used by the main contributors of the Alps Vegetation Database in an ecoinformatics approach to test hypotheses related to plant macroecology and biogeography, but external proposals for joint collaborations are welcome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Genes involved in arbuscular mycorrhizal (AM) symbiosis have been identified primarily by mutant screens, followed by identification of the mutated genes (forward genetics). In addition, a number of AM-related genes has been identified by their AM-related expression patterns, and their function has subsequently been elucidated by knock-down or knock-out approaches (reverse genetics). However, genes that are members of functionally redundant gene families, or genes that have a vital function and therefore result in lethal mutant phenotypes, are difficult to identify. If such genes are constitutively expressed and therefore escape differential expression analyses, they remain elusive. The goal of this study was to systematically search for AM-related genes with a bioinformatics strategy that is insensitive to these problems. The central element of our approach is based on the fact that many AM-related genes are conserved only among AM-competent species. RESULTS: Our approach involves genome-wide comparisons at the proteome level of AM-competent host species with non-mycorrhizal species. Using a clustering method we first established orthologous/paralogous relationships and subsequently identified protein clusters that contain members only of the AM-competent species. Proteins of these clusters were then analyzed in an extended set of 16 plant species and ranked based on their relatedness among AM-competent monocot and dicot species, relative to non-mycorrhizal species. In addition, we combined the information on the protein-coding sequence with gene expression data and with promoter analysis. As a result we present a list of yet uncharacterized proteins that show a strongly AM-related pattern of sequence conservation, indicating that the respective genes may have been under selection for a function in AM. Among the top candidates are three genes that encode a small family of similar receptor-like kinases that are related to the S-locus receptor kinases involved in sporophytic self-incompatibility. CONCLUSIONS: We present a new systematic strategy of gene discovery based on conservation of the protein-coding sequence that complements classical forward and reverse genetics. This strategy can be applied to diverse other biological phenomena if species with established genome sequences fall into distinguished groups that differ in a defined functional trait of interest.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phosphate (Pi) availability is a major factor limiting growth, development, and productivity of plants. In both ecological and agricultural contexts, plants often grow in soils with low soluble phosphate content. Plants respond to this situation by a series of developmental and metabolic adaptations that are aimed at increasing the acquisition of this vital nutrient from the soil, as well as to sustain plant growth and survival. The development of a comprehensive understanding of how plants sense phosphate deficiency and coordinate the responses via signaling pathways has become of major interest, and a number of signaling players and networks have begun to surface for the regulation of the phosphate-deficiency response. In practice, application of such knowledge to improve plant Pi nutrition is hindered by complex cross-talks, which are emerging in the face of new data, such as the coordination of the phosphate-deficiency signaling networks with those involved with hormones, photo-assimilates (sugar), as well as with the homeostasis of other ions, such as iron. In this review, we focus on these cross-talks and on recent progress in discovering new signaling players involved in the Pi-starvation responses, such as proteins having SPX domains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Land plants are prone to strong thermal variations and must therefore sense early moderate temperature increments to induce appropriate cellular defenses, such as molecular chaperones, in anticipation of upcoming noxious temperatures. To investigate how plants perceive mild changes in ambient temperature, we monitored in recombinant lines of the moss Physcomitrella patens the activation of a heat-inducible promoter, the integrity of a thermolabile enzyme, and the fluctuations of cytoplasmic calcium. Mild temperature increments, or isothermal treatments with membrane fluidizers or Hsp90 inhibitors, induced a heat shock response (HSR) that critically depended on a preceding Ca(2+) transient through the plasma membrane. Electrophysiological experiments revealed the presence of a Ca(2+)-permeable channel in the plasma membrane that is transiently activated by mild temperature increments or chemical perturbations of membrane fluidity. The amplitude of the Ca(2+) influx during the first minutes of a temperature stress modulated the intensity of the HSR, and Ca(2+) channel blockers prevented HSR and the onset of thermotolerance. Our data suggest that early sensing of mild temperature increments occurs at the plasma membrane of plant cells independently from cytosolic protein unfolding. The heat signal is translated into an effective HSR by way of a specific membrane-regulated Ca(2+) influx, leading to thermotolerance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Differentiation of female sexual organs in flowering plants is rare and contrasts with the wide range of male reproductive strategies. An unusual example involves diplostigmaty, the possession of spatially and temporally distinct stigmas in Sebaea (Gentianaceae). Here, the single pistil within a flower has an apical stigma, as occurs in most flowering plants, but also a secondary stigma that occurs midway down the style, which is physically discrete and receptive several days after the apical stigma. We examined the function of diplostigmaty in Sebaea aurea, an insect-pollinated species of the Western Cape of South Africa. Floral manipulations and measurements of fertility and mating patterns provided evidence that basal stigmas function to enable autonomous delayed self-pollination, without limiting opportunities for outcrossing and thus avoiding the costs of seed discounting. We suggest that delayed selfing serves as a mechanism of reproductive assurance in populations with low plant density. The possession of dimorphic stigma function provides a novel example of a flexible mixed-mating strategy in plants that is responsive to changing demographic conditions.