66 resultados para large spatial scale


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Studying patterns of species distributions along elevation gradients is frequently used to identify the primary factors that determine the distribution, diversity and assembly of species. However, despite their crucial role in ecosystem functioning, our understanding of the distribution of below-ground fungi is still limited, calling for more comprehensive studies of fungal biogeography along environmental gradients at various scales (from regional to global). Here, we investigated the richness of taxa of soil fungi and their phylogenetic diversity across a wide range of grassland types along a 2800 m elevation gradient at a large number of sites (213), stratified across a region of the Western Swiss Alps (700 km(2)). We used 454 pyrosequencing to obtain fungal sequences that were clustered into operational taxonomic units (OTUs). The OTU diversity-area relationship revealed uneven distribution of fungal taxa across the study area (i.e. not all taxa are everywhere) and fine-scale spatial clustering. Fungal richness and phylogenetic diversity were found to be higher in lower temperatures and higher moisture conditions. Climatic and soil characteristics as well as plant community composition were related to OTU alpha, beta and phylogenetic diversity, with distinct fungal lineages suggesting distinct ecological tolerances. Soil fungi, thus, show lineage-specific biogeographic patterns, even at a regional scale, and follow environmental determinism, mediated by interactions with plants.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Coronary artery disease (CAD) has a significant genetic contribution that is incompletely characterized. To complement genome-wide association (GWA) studies, we conducted a large and systematic candidate gene study of CAD susceptibility, including analysis of many uncommon and functional variants. We examined 49,094 genetic variants in ∼2,100 genes of cardiovascular relevance, using a customised gene array in 15,596 CAD cases and 34,992 controls (11,202 cases and 30,733 controls of European descent; 4,394 cases and 4,259 controls of South Asian origin). We attempted to replicate putative novel associations in an additional 17,121 CAD cases and 40,473 controls. Potential mechanisms through which the novel variants could affect CAD risk were explored through association tests with vascular risk factors and gene expression. We confirmed associations of several previously known CAD susceptibility loci (eg, 9p21.3:p<10(-33); LPA:p<10(-19); 1p13.3:p<10(-17)) as well as three recently discovered loci (COL4A1/COL4A2, ZC3HC1, CYP17A1:p<5×10(-7)). However, we found essentially null results for most previously suggested CAD candidate genes. In our replication study of 24 promising common variants, we identified novel associations of variants in or near LIPA, IL5, TRIB1, and ABCG5/ABCG8, with per-allele odds ratios for CAD risk with each of the novel variants ranging from 1.06-1.09. Associations with variants at LIPA, TRIB1, and ABCG5/ABCG8 were supported by gene expression data or effects on lipid levels. Apart from the previously reported variants in LPA, none of the other ∼4,500 low frequency and functional variants showed a strong effect. Associations in South Asians did not differ appreciably from those in Europeans, except for 9p21.3 (per-allele odds ratio: 1.14 versus 1.27 respectively; P for heterogeneity = 0.003). This large-scale gene-centric analysis has identified several novel genes for CAD that relate to diverse biochemical and cellular functions and clarified the literature with regard to many previously suggested genes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Despite the high prevalence of colon cancer in the world and the great interest in targeted anti-cancer therapy, only few tumor-specific gene products have been identified that could serve as targets for the immunological treatment of colorectal cancers. The aim of our study was therefore to identify frequently expressed colon cancer-specific antigens. We performed a large-scale analysis of genes expressed in normal colon and colon cancer tissues isolated from colorectal cancer patients using massively parallel signal sequencing (MPSS). Candidates were additionally subjected to experimental evaluation by semi-quantitative RT-PCR on a cohort of colorectal cancer patients. From a pool of more than 6000 genes identified unambiguously in the analysis, we found 2124 genes that were selectively expressed in colon cancer tissue and 147 genes that were differentially expressed to a significant degree between normal and cancer cells. Differential expression of many genes was confirmed by RT-PCR on a cohort of patients. Despite the fact that deregulated genes were involved in many different cellular pathways, we found that genes expressed in the extracellular space were significantly over-represented in colorectal cancer. Strikingly, we identified a transcript from a chromosome X-linked member of the human endogenous retrovirus (HERV) H family that was frequently and selectively expressed in colon cancer but not in normal tissues. Our data suggest that this sequence should be considered as a target of immunological interventions against colorectal cancer.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Functional divergence between homologous proteins is expected to affect amino acid sequences in two main ways, which can be considered as proxies of biochemical divergence: a "covarion-like" pattern of correlated changes in evolutionary rates, and switches in conserved residues ("conserved but different"). Although these patterns have been used in case studies, a large-scale analysis is needed to estimate their frequency and distribution. We use a phylogenomic framework of animal genes to answer three questions: 1) What is the prevalence of such patterns? 2) Can we link such patterns at the amino acid level with selection inferred at the codon level? 3) Are patterns different between paralogs and orthologs? We find that covarion-like patterns are more frequently detected than "constant but different," but that only the latter are correlated with signal for positive selection. Finally, there is no obvious difference in patterns between orthologs and paralogs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Initial topography and inherited structural discontinuities are known to play a dominant role in rock slope stability. Previous 2-D physical modeling results demonstrated that even if few preexisting fractures are activated/propagated during gravitational failure all of those heterogeneities had a great influence on mobilized volume and its kinematics. The question we address in the present study is to determine if such a result is also observed in 3-D. As in 2-D previous models we examine geologically stable model configuration, based upon the well documented landslide at Randa, Switzerland. The 3-D models consisted of a homogeneous material in which several fracture zones were introduced in order to study simplified but realistic configurations of discontinuities (e.g. based on natural example rather than a parametric study). Results showed that the type of gravitational failure (deep-seated landslide or sequential failure) and resulting slope morphology evolution are the result of the interplay of initial topography and inherited preexisting fractures (orientation and density). The three main results are i) the initial topography exerts a strong control on gravitational slope failure. Indeed in each tested configuration (even in the isotropic one without fractures) the model is affected by a rock slide, ii) the number of simulated fracture sets greatly influences the volume mobilized and its kinematics, and iii) the failure zone involved in the 1991 event is smaller than the results produced by the analog modeling. This failure may indicate that the zone mobilized in 1991 is potentially only a part of a larger deep-seated landslide and/or wider deep seated gravitational slope deformation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Salmonid populations of many rivers are rapidly declining. One possible explanation is that habitat fragmentation increases genetic drift and reduces the populations' potential to adapt to changing environmental conditions. We measured the genetic and eco-morphological diversity of brown trout (Salmo trutta) in a Swiss stream system, using multivariate statistics and Bayesian clustering. We found large genetic and phenotypic variation within only 40 km of stream length. Eighty-eight percent of all pairwise F(ST) comparisons and 50% of the population comparisons in body shape were significant. High success rates of population assignment tests confirmed the distinctiveness of populations in both genotype and phenotype. Spatial analysis revealed that divergence increased with waterway distance, the number of weirs, and stretches of poor habitat between sampling locations, but effects of isolation-by-distance and habitat fragmentation could not be fully disentangled. Stocking intensity varied between streams but did not appear to erode genetic diversity within populations. A lack of association between phenotypic and genetic divergence points to a role of local adaptation or phenotypically plastic responses to habitat heterogeneity. Indeed, body shape could be largely explained by topographic stream slope, and variation in overall phenotype matched the flow regimes of the respective habitats.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Directed evolution of life through millions of years, such as increasing adult body size, is one of the most intriguing patterns displayed by fossil lineages. Processes and causes of such evolutionary trends are still poorly understood. Ammonoids (externally shelled marine cephalopods) are well known to have experienced repetitive morphological evolutionary trends of their adult size, shell geometry and ornamentation. This study analyses the evolutionary trends of the family Acrochordiceratidae Arthaber, 1911 from the Early to Middle Triassic (251228 Ma). Exceptionally large and bed-rock-controlled collections of this ammonoid family were obtained from strata of Anisian age (Middle Triassic) in north-west Nevada and north-east British Columbia. They enable quantitative and statistical analyses of its morphological evolutionary trends. This study demonstrates that the monophyletic clade Acrochordiceratidae underwent the classical evolute to involute evolutionary trend (i.e. increasing coiling of the shell), an increase in its shell adult size (conch diameter) and an increase in the indentation of its shell suture shape. These evolutionary trends are statistically robust and seem more or less gradual. Furthermore, they are nonrandom with the sustained shift in the mean, the minimum and the maximum of studied shell characters. These results can be classically interpreted as being constrained by the persistence and common selection pressure on this mostly anagenetic lineage characterized by relatively moderate evolutionary rates. Increasing involution of ammonites is traditionally interpreted by increasing adaptation mostly in terms of improved hydrodynamics. However, this trend in ammonoid geometry can also be explained as a case of Copes rule (increasing adult body size) instead of functional explanation of coiling, because both shell diameter and shell involution are two possible paths for ammonoids to accommodate size increase.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Carbonate mylonites with varying proportions of second-phase minerals were collected at positions of increasing metamorphic grade along the basal thrust of the Morcles nappe (Helvetic nappes, Switzerland). Variations of temperature, stress, and strain rate, changes in chemistry of solid and fluid phases, and differing degrees of strain localization and annealing were tracked by measuring the shapes, mean sizes, and size distributions of both matrix and second-phase grains, as well as crystal preferred orientation (CPO) of the matrix. Field structures suggest that strain rate was constant along the fault. The mean and distribution of the calcite grain sizes were affected most profoundly by temperature: Increased temperature, presumably accompanied by decreased stress, correlated with larger mean sizes and wider size distributions. At a given location, the matrix grains in mylonites with more second-phase particles are, on average, smaller, have narrower size distributions, and have more elongate shapes. For example, mylonites with 50 vol.% of second phases have matrix grain sizes half that of pure mylonites. Changes in calcite chemistry and the presence of synkinematic fluids seemed to influence microfabric only weakly. Temporal variations in conditions, such as exhumation-induced cooling, apparently provoke changes in temperature, stress, and strain rate along the nappe. These changes result in further strain localization during retrograde conditions and cause the grain size to be reduced by an additional 50%. The matrix CPO strengthens with increasing temperature or strain, but weakens and rotates with increasing second-phase content, These fabric changes suggest differing rates of grain growth, grain size reduction, and development of CPO owing to variations in the deformation conditions and, perhaps, mechanisms. To interpret natural mylonite structures or to extrapolate mechanical data to natural situations requires careful characterization of the microfabric, and, in particular, second-phase minerals. (c) 2007 Elsevier B.V, All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A major challenge in community ecology is a thorough understanding of the processes that govern the assembly and composition of communities in time and space. The growing threat of climate change to the vascular plant biodiversity of fragile ecosystems such as mountains has made it equally imperative to develop comprehensive methodologies to provide insights into how communities are assembled. In this perspective, the primary objective of this PhD thesis is to contribute to the theoretical and methodological development of community ecology, by proposing new solutions to better detect the ecological and evolutionary processes that govern community assembly. As phylogenetic trees provide by far, the most advanced tools to integrate the spatial, ecological and evolutionary dynamics of plant communities, they represent the cornerstone on which this work was based. In this thesis, I proposed new solutions to: (i) reveal trends in community assembly on phylogenies, depicted by the transition of signals at the nodes of the different species and lineages responsible for community assembly, (ii) contribute to evidence the importance of evolutionarily labile traits in the distribution of mountain plant species. More precisely, I demonstrated that phylogenetic and functional compositional turnover in plant communities was driven by climate and human land use gradients mostly influenced by evolutionarily labile traits, (iii) predict and spatially project the phylogenetic structure of communities using species distribution models, to identify the potential distribution of phylogenetic diversity, as well as areas of high evolutionary potential along elevation. The altitudinal setting of the Diablerets mountains (Switzerland) provided an appropriate model for this study. The elevation gradient served as a compression of large latitudinal variations similar to a collection of islands within a single area, and allowed investigations on a large number of plant communities. Overall, this thesis highlights that stochastic and deterministic environmental filtering processes mainly influence the phylogenetic structure of plant communities in mountainous areas. Negative density-dependent processes implied through patterns of phylogenetic overdispersion were only detected at the local scale, whereas environmental filtering implied through phylogenetic clustering was observed at both the regional and local scale. Finally, the integration of indices of phylogenetic community ecology with species distribution models revealed the prospects of providing novel and insightful explanations on the potential distribution of phylogenetic biodiversity in high mountain areas. These results generally demonstrate the usefulness of phylogenies in inferring assembly processes, and are worth considering in the theoretical and methodological development of tools to better understand phylogenetic community structure.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Understanding factors that shape ranges of species is central in evolutionary biology. Species distribution models have become important tools to test biogeographical, ecological and evolutionary hypotheses. Moreover, from an ecological and evolutionary perspective, these models help to elucidate the spatial strategies of species at a regional scale. We modelled species distributions of two phylogenetically, geographically and ecologically close Tupinambis species (Teiidae) that occupy the southernmost area of the genus distribution in South America. We hypothesized that similarities between these species might have induced spatial strategies at the species level, such as niche differentiation and divergence of distribution patterns at a regional scale. Using logistic regression and MaxEnt we obtained species distribution models that revealed interspecific differences in habitat requirements, such as environmental temperature, precipitation and altitude. Moreover, the models obtained suggest that although the ecological niches of Tupinambis merianae and T. rufescens are different, these species might co-occur in a large contact zone. We propose that niche plasticity could be the mechanism enabling their co-occurrence. Therefore, the approach used here allowed us to understand the spatial strategies of two Tupinambis lizards at a regional scale.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Although age-dependent effects on blood pressure (BP) have been reported, they have not been systematically investigated in large-scale genome-wide association studies (GWASs). We leveraged the infrastructure of three well-established consortia (CHARGE, GBPgen, and ICBP) and a nonstandard approach (age stratification and metaregression) to conduct a genome-wide search of common variants with age-dependent effects on systolic (SBP), diastolic (DBP), mean arterial (MAP), and pulse (PP) pressure. In a two-staged design using 99,241 individuals of European ancestry, we identified 20 genome-wide significant (p ≤ 5 × 10(-8)) loci by using joint tests of the SNP main effect and SNP-age interaction. Nine of the significant loci demonstrated nominal evidence of age-dependent effects on BP by tests of the interactions alone. Index SNPs in the EHBP1L1 (DBP and MAP), CASZ1 (SBP and MAP), and GOSR2 (PP) loci exhibited the largest age interactions, with opposite directions of effect in the young versus the old. The changes in the genetic effects over time were small but nonnegligible (up to 1.58 mm Hg over 60 years). The EHBP1L1 locus was discovered through gene-age interactions only in whites but had DBP main effects replicated (p = 8.3 × 10(-4)) in 8,682 Asians from Singapore, indicating potential interethnic heterogeneity. A secondary analysis revealed 22 loci with evidence of age-specific effects (e.g., only in 20 to 29-year-olds). Age can be used to select samples with larger genetic effect sizes and more homogenous phenotypes, which may increase statistical power. Age-dependent effects identified through novel statistical approaches can provide insight into the biology and temporal regulation underlying BP associations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Identifying adaptive genetic variation is a challenging task, in particular in non-model species for which genomic information is still limited or absent. Here, we studied distribution patterns of amplified fragment length polymorphisms (AFLPs) in response to environmental variation, in 13 alpine plant species consistently sampled across the entire European Alps. Multiple linear regressions were performed between AFLP allele frequencies per site as dependent variables and two categories of independent variables, namely Moran's eigenvector map MEM variables (to account for spatial and unaccounted environmental variation, and historical demographic processes) and environmental variables. These associations allowed the identification of 153 loci of ecological relevance. Univariate regressions between allele frequency and each environmental factor further showed that loci of ecological relevance were mainly correlated with MEM variables. We found that precipitation and temperature were the best environmental predictors, whereas topographic factors were rarely involved in environmental associations. Climatic factors, subject to rapid variation as a result of the current global warming, are known to strongly influence the fate of alpine plants. Our study shows, for the first time for a large number of species, that the same environmental variables are drivers of plant adaptation at the scale of a whole biome, here the European Alps.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

SUMMARY: We present a tool designed for visualization of large-scale genetic and genomic data exemplified by results from genome-wide association studies. This software provides an integrated framework to facilitate the interpretation of SNP association studies in genomic context. Gene annotations can be retrieved from Ensembl, linkage disequilibrium data downloaded from HapMap and custom data imported in BED or WIG format. AssociationViewer integrates functionalities that enable the aggregation or intersection of data tracks. It implements an efficient cache system and allows the display of several, very large-scale genomic datasets. AVAILABILITY: The Java code for AssociationViewer is distributed under the GNU General Public Licence and has been tested on Microsoft Windows XP, MacOSX and GNU/Linux operating systems. It is available from the SourceForge repository. This also includes Java webstart, documentation and example datafiles.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Rock slope instabilities such as rock slides, rock avalanche or deep-seated gravitational slope deformations are widespread in Alpine valleys. These phenomena represent at the same time a main factor that control the mountain belts erosion and also a significant natural hazard that creates important losses to the mountain communities. However, the potential geometrical and dynamic connections linking outcrop and slope-scale instabilities are often unknown. A more detailed definition of the potential links will be essential to improve the comprehension of the destabilization processes and to dispose of a more complete hazard characterization of the rock instabilities at different spatial scales. In order to propose an integrated approach in the study of the rock slope instabilities, three main themes were analysed in this PhD thesis: (1) the inventory and the spatial distribution of rock slope deformations at regional scale and their influence on the landscape evolution, (2) the influence of brittle and ductile tectonic structures on rock slope instabilities development and (3) the characterization of hazard posed by potential rock slope instabilities through the development of conceptual instability models. To prose and integrated approach for the analyses of these topics, several techniques were adopted. In particular, high resolution digital elevation models revealed to be fundamental tools that were employed during the different stages of the rock slope instability assessment. A special attention was spent in the application of digital elevation model for detailed geometrical modelling of past and potential instabilities and for the rock slope monitoring at different spatial scales. Detailed field analyses and numerical models were performed to complete and verify the remote sensing approach. In the first part of this thesis, large slope instabilities in Rhone valley (Switzerland) were mapped in order to dispose of a first overview of tectonic and climatic factors influencing their distribution and their characteristics. Our analyses demonstrate the key influence of neotectonic activity and the glacial conditioning on the spatial distribution of the rock slope deformations. Besides, the volumes of rock instabilities identified along the main Rhone valley, were then used to propose the first estimate of the postglacial denudation and filling of the Rhone valley associated to large gravitational movements. In the second part of the thesis, detailed structural analyses of the Frank slide and the Sierre rock avalanche were performed to characterize the influence of brittle and ductile tectonic structures on the geometry and on the failure mechanism of large instabilities. Our observations indicated that the geometric characteristics and the variation of the rock mass quality associated to ductile tectonic structures, that are often ignored landslide study, represent important factors that can drastically influence the extension and the failure mechanism of rock slope instabilities. In the last part of the thesis, the failure mechanisms and the hazard associated to five potential instabilities were analysed in detail. These case studies clearly highlighted the importance to incorporate different analyses and monitoring techniques to dispose of reliable and hazard scenarios. This information associated to the development of a conceptual instability model represents the primary data for an integrated risk management of rock slope instabilities. - Les mouvements de versant tels que les chutes de blocs, les éboulements ou encore les phénomènes plus lents comme les déformations gravitaires profondes de versant représentent des manifestations courantes en régions montagneuses. Les mouvements de versant sont à la fois un des facteurs principaux contrôlant la destruction progressive des chaines orogéniques mais aussi un danger naturel concret qui peut provoquer des dommages importants. Pourtant, les phénomènes gravitaires sont rarement analysés dans leur globalité et les rapports géométriques et mécaniques qui lient les instabilités à l'échelle du versant aux instabilités locales restent encore mal définis. Une meilleure caractérisation de ces liens pourrait pourtant représenter un apport substantiel dans la compréhension des processus de déstabilisation des versants et améliorer la caractérisation des dangers gravitaires à toutes les échelles spatiales. Dans le but de proposer un approche plus globale à la problématique des mouvements gravitaires, ce travail de thèse propose trois axes de recherche principaux: (1) l'inventaire et l'analyse de la distribution spatiale des grandes instabilités rocheuses à l'échelle régionale, (2) l'analyse des structures tectoniques cassantes et ductiles en relation avec les mécanismes de rupture des grandes instabilités rocheuses et (3) la caractérisation des aléas rocheux par une approche multidisciplinaire visant à développer un modèle conceptuel de l'instabilité et une meilleure appréciation du danger . Pour analyser les différentes problématiques traitées dans cette thèse, différentes techniques ont été utilisées. En particulier, le modèle numérique de terrain s'est révélé être un outil indispensable pour la majorité des analyses effectuées, en partant de l'identification de l'instabilité jusqu'au suivi des mouvements. Les analyses de terrain et des modélisations numériques ont ensuite permis de compléter les informations issues du modèle numérique de terrain. Dans la première partie de cette thèse, les mouvements gravitaires rocheux dans la vallée du Rhône (Suisse) ont été cartographiés pour étudier leur répartition en fonction des variables géologiques et morphologiques régionales. En particulier, les analyses ont mis en évidence l'influence de l'activité néotectonique et des phases glaciaires sur la distribution des zones à forte densité d'instabilités rocheuses. Les volumes des instabilités rocheuses identifiées le long de la vallée principale ont été ensuite utilisés pour estimer le taux de dénudations postglaciaire et le remplissage de la vallée du Rhône lié aux grands mouvements gravitaires. Dans la deuxième partie, l'étude de l'agencement structural des avalanches rocheuses de Sierre (Suisse) et de Frank (Canada) a permis de mieux caractériser l'influence passive des structures tectoniques sur la géométrie des instabilités. En particulier, les structures issues d'une tectonique ductile, souvent ignorées dans l'étude des instabilités gravitaires, ont été identifiées comme des structures très importantes qui contrôlent les mécanismes de rupture des instabilités à différentes échelles. Dans la dernière partie de la thèse, cinq instabilités rocheuses différentes ont été étudiées par une approche multidisciplinaire visant à mieux caractériser l'aléa et à développer un modèle conceptuel trois dimensionnel de ces instabilités. A l'aide de ces analyses on a pu mettre en évidence la nécessité d'incorporer différentes techniques d'analyses et de surveillance pour une gestion plus objective du risque associée aux grandes instabilités rocheuses.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

AbstractIn addition to genetic changes affecting the function of gene products, changes in gene expression have been suggested to underlie many or even most of the phenotypic differences among mammals. However, detailed gene expression comparisons were, until recently, restricted to closely related species, owing to technological limitations. Thus, we took advantage of the latest technologies (RNA-Seq) to generate extensive qualitative and quantitative transcriptome data for a unique collection of somatic and germline tissues from representatives of all major mammalian lineages (placental mammals, marsupials and monotremes) and birds, the evolutionary outgroup.In the first major project of my thesis, we performed global comparative analyses of gene expression levels based on these data. Our analyses provided fundamental insights into the dynamics of transcriptome change during mammalian evolution (e.g., the rate of expression change across species, tissues and chromosomes) and allowed the exploration of the functional relevance and phenotypic implications of transcription changes at a genome-wide scale (e.g., we identified numerous potentially selectively driven expression switches).In a second project of my thesis, which was also based on the unique transcriptome data generated in the context of the first project we focused on the evolution of alternative splicing in mammals. Alternative splicing contributes to transcriptome complexity by generating several transcript isoforms from a single gene, which can, thus, perform various functions. To complete the global comparative analysis of gene expression changes, we explored patterns of alternative splicing evolution. This work uncovered several general and unexpected patterns of alternative splicing evolution (e.g., we found that alternative splicing evolves extremely rapidly) as well as a large number of conserved alternative isoforms that may be crucial for the functioning of mammalian organs.Finally, the third and final project of my PhD consisted in analyzing in detail the unique functional and evolutionary properties of the testis by exploring the extent of its transcriptome complexity. This organ was previously shown to evolve rapidly both at the phenotypic and molecular level, apparently because of the specific pressures that act on this organ and are associated with its reproductive function. Moreover, my analyses of the amniote tissue transcriptome data described above, revealed strikingly widespread transcriptional activity of both functional and nonfunctional genomic elements in the testis compared to the other organs. To elucidate the cellular source and mechanisms underlying this promiscuous transcription in the testis, we generated deep coverage RNA-Seq data for all major testis cell types as well as epigenetic data (DNA and histone methylation) using the mouse as model system. The integration of these complete dataset revealed that meiotic and especially post-meiotic germ cells are the major contributors to the widespread functional and nonfunctional transcriptome complexity of the testis, and that this "promiscuous" spermatogenic transcription is resulting, at least partially, from an overall transcriptionally permissive chromatin state. We hypothesize that this particular open state of the chromatin results from the extensive chromatin remodeling that occurs during spermatogenesis which ultimately leads to the replacement of histones by protamines in the mature spermatozoa. Our results have important functional and evolutionary implications (e.g., regarding new gene birth and testicular gene expression evolution).Generally, these three large-scale projects of my thesis provide complete and massive datasets that constitute valuables resources for further functional and evolutionary analyses of mammalian genomes.